Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physical Sciences and Mathematics

Rare Earth Element Transport In The Yucca Mountain Region, Liqiong Zhang Dec 2010

Rare Earth Element Transport In The Yucca Mountain Region, Liqiong Zhang

UNLV Theses, Dissertations, Professional Papers, and Capstones

In sync with environmental pollution of solutes in nature, from source, process to consequence, geochemical processes (leaching and sorption) and hydraulic transportation of the rare earth elements (REEs) have been investigated at Yucca Mountain (YM), Nevada. This research includes the leaching behavior of trace elements (including REEs) from aquifer rocks, the surface complexation reactions of REEs in synthetic groundwater, and transportation of reactive REEs in the local-scale groundwater system of YM. This dissertation includes three projects. These studies indicate that surface complexation reactions may retard the transportation of REEs along groundwater paths in YM, which suggests a similar behavior of …


Detection Of Quercetin Using Polymer Coated Quartz Crystal Microbalance And The Modification Of Á-Zirconium Phosphate To Develop A Sorbent For Organic Pollutant Removal, Darlington Mlambo Oct 2010

Detection Of Quercetin Using Polymer Coated Quartz Crystal Microbalance And The Modification Of Á-Zirconium Phosphate To Develop A Sorbent For Organic Pollutant Removal, Darlington Mlambo

Dissertations (1934 -)

Sorption processes involve physical and chemical interactions of sorbents with analytes. These may involve the physical and/or chemical processes in which a substance is accumulated at an interface between two phases, or the intermixing of a substance with the matrix of a second phase. The two processes are referred to as adsorption and absorption respectively. The sorption capacities of different classes of sorbents have many potential and demonstrated applications such as sensor development, water treatment, environmental remediation and chromatographic separations. The goal of this work is to explore the sorption capacity of polymers as well as nanodimensional layered materials for …


Density Functional Theory Studies Of Surface-Enhanced Raman Spectroscopy In Electrochemical Interfaces, Liu-Bin Zhao, De-Yin Wu, Bin Ren, Zhong-Qun Tian Aug 2010

Density Functional Theory Studies Of Surface-Enhanced Raman Spectroscopy In Electrochemical Interfaces, Liu-Bin Zhao, De-Yin Wu, Bin Ren, Zhong-Qun Tian

Journal of Electrochemistry

Quantum chemical density functional theory and Raman scattering theory were used to study the bonding mechanism and surface-enhanced Raman spectroscopy of pyridine adsorbed on transition metals (Ⅷ group) and coinage metals (IB group) . SERS studies of pyridine-metal systems have been reviewed. Chemical bonding mechanism as well as photo-driven charge transfer mechanism was considered to investigate the vibrational frequency shift and the enhancement of SERS intensity in electrochemical interfaces. Our theoretical results can be used to interpret the SERS phenomena dependent on metals,excitation wavelengths,and applied potentials.


Electrochemical Surface-Enhanced Raman Spectroscopy—Current Status And Perspective, Bin Ren, Jian-Feng Li, Yi-Fan Huang, Zhi-Cong Zeng, Zhong-Qun Tian Aug 2010

Electrochemical Surface-Enhanced Raman Spectroscopy—Current Status And Perspective, Bin Ren, Jian-Feng Li, Yi-Fan Huang, Zhi-Cong Zeng, Zhong-Qun Tian

Journal of Electrochemistry

Electrochemical interface is a very important interface closely related to various energy and life processes. Surface-enhanced Raman scattering was widely used in electrochemistry soon after its discovery to understand the surface bonding,configuration,and orientation of the surface species. In recent 10 years,the fast development of nanoscience and nanotechnology has offered SERS with abundant substrates and characterization methods,which has allowed impressive development of electrochemical SERS. This articles will follow the time line to make systematically overview of SERS on Au and Ag,thin-layer transition-metal SERS,pure transition metal SERS,core-shell SERS and those methods for studying single crystal surfaces,including gap-mode SERS, TERS and SHINERS. Emphasis …


The Effects Of Changes In Water Content On Uranium(Vi) Leaching In Sediment Mixtures Containing Gravel, Andrew Weber Moore Aug 2010

The Effects Of Changes In Water Content On Uranium(Vi) Leaching In Sediment Mixtures Containing Gravel, Andrew Weber Moore

Masters Theses

This study is aimed at understanding the physical and chemical effects that changes in water content have on uranium leaching in sediment containing gravel. It was hypothesized that leaching will be more efficient under unsaturated conditions because flow will be restricted to the smallest pores and will have the most contact with the uranium contaminated sediment. Under saturated conditions, a large portion of the flow will bypass the < 2 mm material, and in turn not come into contact with uranium contaminated material. Batch adsorption and desorption experiments were performed on < 2 mm ERDF sediment to determine the linearity and reversibility of sorption processes and to aid in the interpretation of the leaching experiments. Results of the desorption experiments on aged, contaminated sediments show that the mass percent of sorbed U(VI) released to solution decreased as the sorbed concentration of U(VI) decreased. The opposite trend was observed on freshly contaminated sediments. This indicated that aging increased U(VI) affinity for the solid phase and was attributed to either the crystallization of calcite, which incorporated a portion of the sorbed U(VI) as it crystallized, or the presence of voids in basaltic lithic fragments accessed by diffusion. Column leaching experiments were performed at two water contents on artificially contaminated sediment collected from the Department of Energy’s (DOE) Hanford Site, Washington state. The sediment contained 81.3% gravel (> 2 mm) by mass. Non-reactive tracers were well fit with the convection-dispersion equation (CDE) at both high and low water contents indicating physical equilibrium. The column experimental data were fitted to an …


Factors Influencing The Adsorption Of Synthetic Organic Compounds By Carbon Nanotubes In Aquatic Environments, Ting Shao Aug 2010

Factors Influencing The Adsorption Of Synthetic Organic Compounds By Carbon Nanotubes In Aquatic Environments, Ting Shao

All Theses

Carbon nanotubes (CNTs) are allotropes of carbon consisting of sheets of carbon atoms covalently bonded in hexagonal arrays that are seamlessly rolled into a hollow, cy-lindrical shape with both ends rounded by fullerene-like caps. As large amounts of CNTs have been manufactured and significant growth is expected in commercial CNT produc-tion, there is a major concern over their health and environmental risks once they enter into the environment. In aquatic systems, CNTs are likely to adsorb organic chemicals and aggregate as bundles due to their extremely hydrophobic surfaces. The aggregation state of CNTs plays a significant role in their fate …


Enhanced Oxygen Activation Over Supported Bimetallic Au-Ni Catalysts, Bert D. Chandler, Cormac G. Long, John D. Gilbertson, Christopher J. Pursell, G. Vijayaraghavan, K. J. Stevenson May 2010

Enhanced Oxygen Activation Over Supported Bimetallic Au-Ni Catalysts, Bert D. Chandler, Cormac G. Long, John D. Gilbertson, Christopher J. Pursell, G. Vijayaraghavan, K. J. Stevenson

Chemistry Faculty Research

New bimetallic Ni-Au supported nanoparticle catalysts were prepared by using dendrimer templated nanoparticles. Amine-terminated generation 5 polyamidoamine (PAMAM) dendrimers were anchored to a commercial silica with a siloxane linked anhydride. The dendrimer was then alkylated and used to template Ni-Au nanoparticles, which were subsequently extracted into organic solution as thiol monolayer protected clusters (MPCs). Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) indicated bimetallic nanoparticles of about 2 nm in size. Nanoparticles were deposited onto P-25 TiO2, and the capping thiol ligands were removed under flowing H2. DRIFTS infrared spectra of adsorbed CO showed only Au on the catalyst …


Theoretical And Computational Study Of Time Dependent Scattering On A 2d Surface, Michael Sohn Apr 2010

Theoretical And Computational Study Of Time Dependent Scattering On A 2d Surface, Michael Sohn

UNLV Theses, Dissertations, Professional Papers, and Capstones

The quantum mechanical treatment of the elastic scattring of atoms from a crystal surface provides valuable information, such as surface properties and gas-surface interaction potentials. However, since it is based on the stationary state solution, it does not provide the details of the scattering process in the neighborhood of the surface, especially when atoms are physically adsorbed. In this thesis, the time evolution of the scattering process is treated in 2D with a model potential, V(x, z) = -|g|δ(z) + λδ(z)cos(2πx/a), using the Gaussian wave packet approach. The focus is on the case where the Gaussian wave packet makes a …


Equilibrium And Kinetic Modeling Of The Adsorption Of Indigo Carmine Onto Silk, Naparat Jiwalak, Saowanee Rattanaphani, John B. Bremner, Vichitr Rattanaphani Jan 2010

Equilibrium And Kinetic Modeling Of The Adsorption Of Indigo Carmine Onto Silk, Naparat Jiwalak, Saowanee Rattanaphani, John B. Bremner, Vichitr Rattanaphani

Faculty of Science - Papers (Archive)

Quantitative adsorption kinetic and equilibrium parameters for indigo carmine dyeing of silk were studied using UV-visible absorption spectroscopy. The effect of initial dye concentration, contact time, pH, material to liquor ratio (MLR), and temperature were determined to find the optimal conditions for adsorption. The mechanism of adsorption of indigo carmine dyeing onto silk was investigated using the pseudo first-order and pseudo second-order kinetic models. The adsorption kinetics was found to follow a pseudo-second-order kinetic model with an activation energy (E-a) of 51.06 kJ/mol. The equilibrium adsorption data of indigo carmine dye on silk were analyzed by the Langmuir and Freundlich …


Modeling The Noble Metal/Tio2 (110) Interface With Hybrid Dft Functionals: A Periodic Electrostatic Embedded Cluster Model Study, Salai Cheettu Ammal, Andreas Heyden Jan 2010

Modeling The Noble Metal/Tio2 (110) Interface With Hybrid Dft Functionals: A Periodic Electrostatic Embedded Cluster Model Study, Salai Cheettu Ammal, Andreas Heyden

Faculty Publications

The interaction of Aun and Ptn (n=2,3) clusters with the stoichiometric and partially reduced rutile TiO2 (110) surfaces has been investigated using periodic slab and periodic electrostatic embedded cluster models. Compared to Au clusters, Pt clusters interact strongly with both stoichiometric and reduced TiO2 (110) surfaces and are able to enhance the reducibility of the TiO2 (110) surface, i.e., reduce the oxygen vacancy formation energy. The focus of this study is the effect of Hartree–Fock exchange on the description of the strength of chemical bonds at the interface of Au/Pt clusters and the TiO2 (110) surface. Hartree–Fock exchange helps describing …


Copper Isotope Fractionation During Surface Adsorption And Intracellular Incorporation By Bacteria, Jesica Urbina Navarrete Jan 2010

Copper Isotope Fractionation During Surface Adsorption And Intracellular Incorporation By Bacteria, Jesica Urbina Navarrete

Open Access Theses & Dissertations

Copper isotopes may prove to be a useful tool for investigating bacteria-metal interactions recorded in natural waters, soils, and rocks. However, experimental data that constrain Cu isotope fractionation in biologic systems are limited and unclear. In this study we utilized Cu isotopes (65Cu) as a tool to investigate Cu-bacteria interactions, including surface adsorption and intracellular incorporation. Experiments were conducted with individual Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacterial species as well as with bacterial consortia from several natural environments. Adsorption experiments were conducted with live or dead cells over the pH range 2.5 to 6. Surface adsorption of Cu …