Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Semiconductors

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 64

Full-Text Articles in Physical Sciences and Mathematics

Quantitative, Photocurrent Multidimensional Coherent Spectroscopy, Adam Halaoui Nov 2023

Quantitative, Photocurrent Multidimensional Coherent Spectroscopy, Adam Halaoui

Electronic Theses and Dissertations

Multidimensional coherent spectroscopy (MDCS) is a quickly growing field that has a lot of advantages over more conventional forms of spectroscopy. These advantages all come from the fact that MDCS allows us to get time resolved correlated emission and absorption spectra using very precisely chosen interactions between the density matrix and the excitation laser. MDCS spectra gives the researcher a lot of information that can be extracted purely through qualitative analysis. This is possible because state couplings are entirely separated on the spectra, and once we know how to read the data, we can see how carriers transport in the …


Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers May 2023

Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers

Physics Undergraduate Honors Theses

Terahertz (THz) photoconductive antennas (PCAs) using 40nm thin-film flakes of black phosphorus (BP) and hexagonal boron nitride (hBN) have been shown computationally to be capable of THz emission comparable to those based on GaAs [2]. In this paper, I briefly describe the scientific and practical interest in THz emissions and explain what warrants research into black phosphorus as a photoconductive semiconductor in THz devices. Furthermore, I outline the basic principle of how these antennas work and mention alternative designs produced by other researchers in the past. Finally, I summarize the fabrication process of these antennas, as well as the measurements …


Electrodeposition Of Epitaxial Wide Bandgap P-Type Semiconductors And Copper Metal For Energy Conversion And Flexible Electronics, Bin Luo Jan 2023

Electrodeposition Of Epitaxial Wide Bandgap P-Type Semiconductors And Copper Metal For Energy Conversion And Flexible Electronics, Bin Luo

Doctoral Dissertations

"Epitaxial electrodeposition is a simple, low-cost technology to produce highly ordered materials on single-crystal surfaces. This research focuses on the epitaxial electrodeposition of wide bandgap p-type semiconductors and epitaxial Cu thin films via a self-assembled monolayer for energy conversion and flexible electronics. Paper I introduces the epitaxial electrodeposition of hole conducting CuSCN nanorods onto Au (111) surface, and lift-off to produce flexible and transparent foils. Highly ordered CuSCN could serve as an inorganic transport layer in various opto-electronic devices such as perovskite solar cells, LEDs, and transistors. An ordered and transparent CuSCN foil was also produced by epitaxial lift-off following …


Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi Dec 2022

Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi

Graduate Theses and Dissertations

This work focuses on the investigation of gate-defined quantum dots in two-dimensional transition metal dichalcogenide tungsten diselenide (WSe2) as a means to unravel mesoscopic physical phenomena such as valley-contrasting physics in WSe2 flakes and its potential application as qubit, as well as realizing gate-controlled quantum dots based on elementaltellurium nanostructures which may unlock the topological nature of the host material carriers such as Weyl states in tellurium nanowires.The fabrication and characterization of gate-defined hole quantum dots in monolayer and bilayer WSe2 are reported. The gate electrodes in the device design are located above and below the WSe2 nanoflakes to accumulate …


Unassisted Photoelectrochemical Solar-To-Hydrogen On Cubi2o4 Photocathodes Using Glycerol As A Sacrificial Oxidant, Caroline Eddy Dec 2022

Unassisted Photoelectrochemical Solar-To-Hydrogen On Cubi2o4 Photocathodes Using Glycerol As A Sacrificial Oxidant, Caroline Eddy

Chemistry & Biochemistry Undergraduate Honors Theses

The need to decarbonize society has driven the development of alternative energy technologies. Solar panels are capable of generating electricity at large scale and at competitive costs to fossil fuels, such as coal or natural gas. However, they are only capable of generating electricity when the sun is out. It is therefore necessary to understand how to store that energy for on-demand use. It is also desirable that the storage be portable, lightweight, and compatible with transportation infrastructure like fossil fuels are. A very desirable chemical fuel is H2 which can be produced simply by water electrolysis. Production of …


Engineering Rare-Earth Based Color Centers In Wide Bandgap Semiconductors For Quantum And Nanoscale Applications, Gabriel I. López-Morales Sep 2022

Engineering Rare-Earth Based Color Centers In Wide Bandgap Semiconductors For Quantum And Nanoscale Applications, Gabriel I. López-Morales

Dissertations, Theses, and Capstone Projects

For many years, atomic point-defects have been readily used to tune the bulk properties of solid-state crystalline materials, for instance, through the inclusion of elemental impurities (doping) during growth, or post-processing treatments such as ion bombardment or high-energy irradiation. Such atomic point-defects introduce local ‘incompatible’ chemical interactions with the periodic atomic arrangement that makes up the crystal, resulting for example in localized electronic states due to dangling bonds or excess of electrons. When present in sufficient concentrations, the defects interact collectively to alter the overall bulk properties of the host material. In the low concentration limit, however, point-defects can serve …


Electrical And Optical Characterization Of Two-Dimensional Semiconductors Using Ultrafast Spectroscopy, Pan Adhikari Aug 2022

Electrical And Optical Characterization Of Two-Dimensional Semiconductors Using Ultrafast Spectroscopy, Pan Adhikari

All Dissertations

The emergence of two-dimensional (2D) layered materials provides unprecedented opportunities for studying excitonic physics due to the strong Coulomb interaction between the electron-hole pair. Because of the reduced dimensionality and weak dielectric screening, the exciton is stable at room temperature, unlike bulk semiconductors. The evolution from low to high carrier density for optical gain in 2D semiconductors involves insulating exciton gas, exciton condensation, co-existence of various excitonic complexes, electron-hole plasmas (EHPs), or electron-hole liquids (EHLs), leading to the Mott transition. Strong interaction among the excitons, such as exciton-exciton annihilation (EEA), serves as a hot-carrier generation. A bound exciton dissociates into …


Probing The Stability And Solution Processability Of Metal Chalcogenide Semiconducting Materials, Mengwen Yan Jul 2022

Probing The Stability And Solution Processability Of Metal Chalcogenide Semiconducting Materials, Mengwen Yan

Legacy Theses & Dissertations (2009 - 2024)

Metal chalcogenide (MCh) semiconductors have long research history due to their earth abundance, easy synthesizability, and accessible band gap tunability. People have realized their functionality as p-type semiconductors that provide good hole mobility and conductivity within the materials. However, MChs have easier reaction pathway with gas molecules (H2O and O2) compared to other semiconductors such as metal oxides. Also, poor solution processability of all MChs make low-cost thin film fabrication methods hard to achieve. In this thesis, we target to understand both the chemical stability and solution processability of MCh materials. ZnSe based inorganic organic layered hybrids (LHs) were exfoliated …


Colloidal Monolayers For Concentration Light In Ultra-Thin Semiconductor Layers, Rachel Cherry May 2022

Colloidal Monolayers For Concentration Light In Ultra-Thin Semiconductor Layers, Rachel Cherry

Graduate Theses and Dissertations

Thin film semiconductors are used as photoconductive absorber layers for the development of broadband terahertz generation. Using a femtosecond laser pulse, the generation of a transient increase in the conductivity occurs by photoexciting conduction band electrons in the semiconductor. These thermalize through the emission of terahertz radiation. The route to terahertz generation is not particularly efficient as significant losses come from the absorption in the substrate that is beneath the photoconductive antenna layer. This work explores the application of hexagonally close-packed monolayers of chemically synthesized nanospheres as a potential light concentration method for ultra-thin films of GaAs and black phosphorus …


Tailoring Interfaces And Composition For Stable And Efficient Perovskite Solar Cells, Hamza Javaid Feb 2022

Tailoring Interfaces And Composition For Stable And Efficient Perovskite Solar Cells, Hamza Javaid

Doctoral Dissertations

Metal halide perovskite solar cells (PSCs) have revolutionized the field of thin film photovoltaics. Within a decade, the power conversion efficiencies (PCEs) have increased at a phenomenal rate, rising from 3.8% to more than 25% in single-junction devices, moving them ahead of the current silicon-based technology. The high efficiencies of perovskite solar cells (PSCs) and their other unique properties arise from a combination of organic and inorganic components and electronic-ionic conduction, making them excellent candidates for a plethora of applications. However, PSCs face a significant—and ironic—roadblock to commercialization: these light-harvesting materials degrade under sunlight—the very condition they would need …


Impact Of Proton And Neutron Irradiation On Carrier Transport Properties In Ga2o3, Andrew C. Silverman Jan 2022

Impact Of Proton And Neutron Irradiation On Carrier Transport Properties In Ga2o3, Andrew C. Silverman

Honors Undergraduate Theses

This project studies the properties of minority charge carriers in beta gallium oxide (β -Ga2O3). The behavior of minority carriers is of high importance as it greatly affects conduction and consequently device performance. Cathodoluminescence (CL) spectroscopy and EBIC (Electron Beam Induced Current) are the main experimental techniques used to study minority carrier behavior.

High energy radiation affects minority carrier properties through damage to the material and through the production of carrier traps that reduce the conductivity and mobility of the material. In this investigation, we study the effects of various kinds of high energy radiation on …


Theoretical Investigations Of The Structural, Dynamical, Electronic, Magnetic, And Thermoelectric Properties Of Corhysi (Y = Cr, Mn) Quaternary Heusler Alloys, Abdullah Hussain Hzzazi Dec 2021

Theoretical Investigations Of The Structural, Dynamical, Electronic, Magnetic, And Thermoelectric Properties Of Corhysi (Y = Cr, Mn) Quaternary Heusler Alloys, Abdullah Hussain Hzzazi

Graduate Theses and Dissertations

Thermoelectric materials have potential properties for utilizing waste heat. The computations are used to estimate the electronic structure of CoRhYSi (Y = Cr, Mn) Quaternary Heusler alloys, as well as their elastic and magnetic characteristics. The full-potential linearized augmented plane wave is used in the calculations. The exchange-correlations are addressed using Perdew–Burke and Ernzerhof's generalized gradient approximation (GGA-PBE). With the exception of CoRhCrSi and CoRhMnSi, which are simple ferromagnets that are approximately half metallic in nature, electronic structure calculations demonstrate that these compounds have a gap in the minority states band and are obviously half-metallic ferromagnets. The magnetic moments of …


Design And Characterization Of Standard Cell Library Using Finfets, Phanindra Datta Sadhu Jun 2021

Design And Characterization Of Standard Cell Library Using Finfets, Phanindra Datta Sadhu

Master's Theses

The processors and digital circuits designed today contain billions of transistors on a small piece of silicon. As devices are becoming smaller, slimmer, faster, and more efficient, the transistors also have to keep up with the demands and needs of the daily user. Unfortunately, the CMOS technology has reached its limit and cannot be used to scale down due to the transistor's breakdown caused by short channel effects. An alternative solution to this is the FinFET transistor technology, where the gate of the transistor is a three dimensional fin that surrounds the transistor and prevents the breakdown caused by scaling …


Ga-Based Iii-V Semiconductor Photoanodes For Solar Fuels And Novel Techniques To Investigate Their Photocorrosion., Sahar Pishgar May 2021

Ga-Based Iii-V Semiconductor Photoanodes For Solar Fuels And Novel Techniques To Investigate Their Photocorrosion., Sahar Pishgar

Electronic Theses and Dissertations

Solar energy is one of the most abundant renewable energy sources. However, the diurnal variation of the sun as well as seasonal and weather effects, limits the widespread global implementation of solar energy. Thus, Cost-effective energy storage is critical to overcome the intermittent nature of solar energy available on the earth. Photoelectrolysis of water to oxygen and hydrogen fuel is a promising large-scale solution to store intermittent solar energy in a dense and portable form. Photoelectrochemical (PEC) water-splitting, or artificial photosynthesis, research strives to develop a semiconductor photoelectrode with both high efficiency and long-term stability. Semiconductors of the III–V class …


Fundamental Transport Properties In Silicon Quantum Structures, Nazban M. Darukhanawalla Jan 2021

Fundamental Transport Properties In Silicon Quantum Structures, Nazban M. Darukhanawalla

Electronic Thesis and Dissertation Repository

In the field of silicon photonics, there is an effort to bridge the gap between electrical and optical signals on a single platform, creating a need for Si-based light sources. In this project, Si quantum structures – Si quantum wells and quantum dots in SiO2 were fabricated via solid state precipitation methods. Their properties were studied using X-ray photoelectron spectroscopy, photoluminescence and I-V measurements. Rutherford backscattering spectroscopy was used for depth analysis in monitoring the Si distribution. Different electrical transport mechanisms were explored to understand how an ensemble of silicon QD’s or a silicon quantum well behaves in an SiO2 …


Synthesis, Crystal Engineering, And Material Properties Of Small-Molecule Organic Semiconductors, Emma Holland Jan 2021

Synthesis, Crystal Engineering, And Material Properties Of Small-Molecule Organic Semiconductors, Emma Holland

Theses and Dissertations--Chemistry

Small-molecule organic materials are of increasing interest for electronic and photonic devices due to their solution processability and tunability, allowing devices to be fabricated at low temperature on flexible substrates and offering utility in specialized applications. This tunability is the result of functionalization through careful synthetic strategy to influence both material properties and solid-state arrangement, both crucial variables in device applications. Functionalization of a core molecule with various substituents allows the fine-tuning of optical and electronic properties, and functionalization with solubilizing groups allows some degree of control over the solid- state order, or crystal packing. These combinations of core chromophores …


Wavelength Swept Photonic Crystal Laser, Sharon Marie Butler Jan 2021

Wavelength Swept Photonic Crystal Laser, Sharon Marie Butler

Theses

Photonics has become integral to society, based on its ability to sense the environment, to manipulate materials and to transport information. The dominance of silicon electronics has made silicon photonics a compelling vision, but difficulties with light emission have caused delays in implementation and an enduring role for III-V materials. The research conducted in this Ph.D. thesis involves study and utilisation of a combination of the optical gain of Indium Phosphide with the precision and energy of silicon nanophotonics in a novel family of lasers. A continuously tunable akinetic reflective filter is exploited to obtain a wavelength swept laser. The …


Data Processing & Analysis For Atomic Force Microscopy (Afm), Molly Mcdonough, Polievkt Perov, Walter Johnson, Stevan Radojev Dec 2020

Data Processing & Analysis For Atomic Force Microscopy (Afm), Molly Mcdonough, Polievkt Perov, Walter Johnson, Stevan Radojev

Undergraduate Theses and Capstone Projects

Scanning Probe Microscopy (SPM) has become a critical tool for characterization of materials in fields such as physics, material science, chemistry, and biology. Atomic Force Microscopy (AFM) is an increasingly useful technique because of its high resolution in three dimensions, the sample does not need to be conductive, and the technique does not need to take place in vacuum. AFM can image a wide variety of topographies and many different types of materials. AFM can deliver 3D topography information from the angstrom level to the micron scale with high resolution. One of the most important aspects of Atomic Force Microscopy …


Development And Efficient Implementation Of Electron-Hole Interaction Kernel For Investigation Of Electronic Excitations In Semiconductor And Metallic Nanoparticles, Peter Francis Mclaughlin Aug 2020

Development And Efficient Implementation Of Electron-Hole Interaction Kernel For Investigation Of Electronic Excitations In Semiconductor And Metallic Nanoparticles, Peter Francis Mclaughlin

Dissertations - ALL

The focus of this work is to construct theoretical methods or approaches to tackle computationally challenging problems in quantum chemistry. The primary topic of the work will focus on efficient theories that allow for capturing electron-correlation in semiconductor or metallic nanoparticles. These systems are computationally challenging due to the size of the systems, the number of electrons per atom, and the degeneracy of the particle-hole states. Three methods presented here are aimed at providing novel theoretical methods towards computationally inexpensive electronic excited state calculations. The frequency-dependent geminal-screened electron-hole interaction kernel (FD-GSIK) method provides a real-space approach towards eliminating the virtual …


Ii-Vi Type-Ii Quantum Dot Superlattices For Novel Applications, Vasilios Deligiannakis Feb 2020

Ii-Vi Type-Ii Quantum Dot Superlattices For Novel Applications, Vasilios Deligiannakis

Dissertations, Theses, and Capstone Projects

In this thesis, we discuss the growth procedure and the characterization results obtained for epitaxially grown submonolayer type-II quantum dot superlattices made of II-VI semiconductors. We have investigated the spin dynamics of ZnSe layers with embedded type-II ZnTe quantum dots and the use of (Zn)CdTe/ZnCdSe QDs for intermediate band solar cell (IBSC). Samples with a higher quantum dot density exhibit longer electron spin lifetimes, up to ~1 ns at low temperatures. Tellurium isoelectronic centers, which form in the ZnSe spacer regions as a result of the growth conditions, were also probed. A new growth sequence for type-II (Zn)CdTe/ZnCdSe (QDs) was …


Hybrid Frequency Modulated Silicon Photonic Crystal Laser, Andrei Bakoz Jan 2020

Hybrid Frequency Modulated Silicon Photonic Crystal Laser, Andrei Bakoz

Theses

Silicon photonics takes advantage of the mature complementary metal-oxide semiconductor (CMOS) infrastructure and processes, and is actively pursued for the implementation of complex optical components and photonic integrated circuits (PICs) at low cost and high volumes. Despite a constant refinement of silicon photonics technology to meet the evolving requirements for applications, the poor light emission ability of silicon remains a constraint. As a result, the most essential building block of an optical system, an efficient light emitter, remains absent in PICs based on silicon. This thesis is focused on study of the potential of an external cavity (EC) hybrid III-V …


The Analysis Of Trifluoromethylbenzimidazole (Tfmbi) Crystals Using Physical Chemistry Techniques To Explain Ferroelectric And Anti-Ferroelectric Properties Of The Compound, Kanwar Bhullar Aug 2019

The Analysis Of Trifluoromethylbenzimidazole (Tfmbi) Crystals Using Physical Chemistry Techniques To Explain Ferroelectric And Anti-Ferroelectric Properties Of The Compound, Kanwar Bhullar

Honors College Theses

Ferroelectrics are a group of materials possessing the unique chemical property of being able to switch their electrical polarity when exposed to an electric field. This property makes ferroelectrics a promising field of study with the potential to impact various future technologies in information and energy storage, as well as quantum mechanics. Understanding molecular structures of ferroelectric (and opposite anti-ferroelectric) materials, and how they relate to the compound’s properties is essential to harnessing the potential these materials carry. The report discusses analysis of anti-ferroelectric material trifluoromethylbenzimidazole (TFMBI), by subjecting the compound to various physical and computational chemistry techniques at varying …


Using Fundamental Properties Of Light To Investigate Photonic Effects In Condensed Matter And Biological Tissues, Laura A. Sordillo Jan 2019

Using Fundamental Properties Of Light To Investigate Photonic Effects In Condensed Matter And Biological Tissues, Laura A. Sordillo

Dissertations and Theses

Light possesses characteristics such as polarization, wavelength and coherence. The interaction of light and matter, whether in a semiconductor or in a biological sample, can reveal important information about the internal properties of a system. My thesis focuses on two areas: photocarriers in gallium arsenide and biomedical optics. Varying the excitation wavelength can be used to study both biological tissue and condensed matter. I altered the excitation wavelengths to be in the longer near-infrared (NIR) optical windows, in the shortwave infrared (SWIR) range, a wavelength region previously thought to be unusable for medical imaging. With this method, I acquired high …


Exploring Gated Nanoelectronic Devices Fabricated From 1d And 2d Materials, Prathamesh A. Dhakras Jan 2019

Exploring Gated Nanoelectronic Devices Fabricated From 1d And 2d Materials, Prathamesh A. Dhakras

Legacy Theses & Dissertations (2009 - 2024)

One and two dimensional materials are being extensively researched toward potential application as ultra-thin body channel materials. The difficulty of implementing physical doping methods in these materials has necessitated various alternative doping schemes, the most promising of which is the electrostatic gating technique due to its reconfigurability. This dissertation explores the different fundamental devices that can be fabricated and characterized by taking advantage of the electrostatic gating of individual single-walled carbon nanotubes (SWNTs), dense SWNT networks and exfoliated 2D tungsten diselenide (WSe2) flakes.


Electron Transport In One And Two Dimensional Materials, Samuel William Lagasse Jan 2019

Electron Transport In One And Two Dimensional Materials, Samuel William Lagasse

Legacy Theses & Dissertations (2009 - 2024)

This dissertation presents theoretical and experimental studies in carbon nanotubes (CNTs), graphene, and van der Waals heterostructures. The first half of the dissertation focuses on cutting edge tight-binding-based quantum transport models which are used to study proton irradiation-induced single-event effects in carbon nanotubes [1], total ionizing dose effects in graphene [2], quantum hall effect in graded graphene p-n junctions [3], and ballistic electron focusing in graphene p-n junctions [4]. In each study, tight-binding models are developed, with heavy emphasis on tying to experimental data. Once benchmarked against experiment, properties of each system which are difficult to access in the laboratory, …


Synthesis Of Cadmium Arsenide Semiconductor Nanoparticles, Superatomic Silver Clusters, And Silver Coordination Polymers, Sarthak Jashubhai Patel Jan 2019

Synthesis Of Cadmium Arsenide Semiconductor Nanoparticles, Superatomic Silver Clusters, And Silver Coordination Polymers, Sarthak Jashubhai Patel

Legacy Theses & Dissertations (2009 - 2024)

Nanomaterials have chemical, electronic, optical, and other properties distinct from their bulk counterparts. However, the atom-precise synthesis of these materials remains a challenge, leaving open many scientific questions regarding the size regime between nanoparticulate (quantum confined) and bulk character. In this work, efforts toward the synthesis of nanoparticulate and atom-precise metal and semimetal materials are described. The synthesis of II-V semiconductor Cd3As2 having a near-zero bandgap is discussed. Analysis by UV-Vis absorption spectroscopy and powder X-ray diffraction indicate the formation of material with unexpected crystallinity and absorption properties The interaction between the molecular source of As and the solvent was …


Nonlinear Coupled Effects In Nanomaterials, Sia Bhowmick Jan 2018

Nonlinear Coupled Effects In Nanomaterials, Sia Bhowmick

Theses and Dissertations (Comprehensive)

Materials at the nanoscale have different chemical, structural, and optoelectrical properties compared to their bulk counterparts. As a result, such materials, called nanomaterials, exhibit observable differences in certain physical phenomena. One such resulting phenomenon called the piezoelectric effect has played a crucial role in miniature self-powering electronic devices called nanogenerators which are fabricated by using nanostructures, such as nanowires, nanorods, and nanofilms. These devices are capable of harvesting electrical energy by inducing mechanical strain on the individual nanostructures. Electrical energy created in this manner does not have environmental limitations. In this thesis, important coupled effects, such as the nonlinear piezoelectric …


Generalizable Modeling Of Charge Transport In Single Electron Transistor Devices: Application To Thermal Sensitivity In Semiconducting Island Systems, Paniz Khanmohammadi Hazaveh Jan 2018

Generalizable Modeling Of Charge Transport In Single Electron Transistor Devices: Application To Thermal Sensitivity In Semiconducting Island Systems, Paniz Khanmohammadi Hazaveh

Dissertations, Master's Theses and Master's Reports

Electronic devices, especially MOSFETs, have been dimensionally scaled down to enhance operation of integrated circuits, addressing challenges such as current leakage, fluctuation of intrinsic semiconductor properties, and power dissipation. Reaching dimensions below 20 nm, there are fundamental limitations that are difficult to overcome, driving alternative device paradigms to be sought utilizing the quantum mechanical behavior of electrons. Single electron transistor (SET) devices are examples of a new generation of low-power transistors designed to transport information via single electron tunneling through one or more islands separated by tunnel junctions. Experimentally explored SET devices have shown that there are advantages to using …


Detecting Majorana Fermion Induced Crossed Andreev Reflection, Lei Fang Sep 2017

Detecting Majorana Fermion Induced Crossed Andreev Reflection, Lei Fang

Dissertations, Theses, and Capstone Projects

This dissertation is devoted to a study of detecting the Majorana fermion induced crossed Andreev reflection.

Majorana fermions are particles that constitute their own antiparticles. In condensed matter physics, Majorana fermions are zero energy modes that reside at edges or around vortices of topological superconductors. The special properties of Majorana fermions result in their potential to conduct topological quantum computation, which has been attracting a lot of current research. One of the most important issues in the field of the Majorana fermion physics now is to detect their existence in realistic systems. Among many classes of detecting methods, a transport …


Property Morphology Correlations Of Organic Semiconductor Nanowires, Frederick Marshall Mcfarland Aug 2017

Property Morphology Correlations Of Organic Semiconductor Nanowires, Frederick Marshall Mcfarland

Dissertations

Chemically doped and non-doped P3HT nanoaggregates are studied to establish a comprehensive understanding of the interplay between their morphology and various optoelectronic properties. One-dimensional nanoaggregates of P3HT are chosen as the model systems here due to their high surface/volume ratio and suitability for microscopic investigations.

Atomic force microscopy (AFM) and kelvin probe force microscopy (KPFM) are used to correlate property/morphology characteristics of non-doped P3HT nanowhiskers. Topographical measurements indicate that individually folded P3HT motifs stack via interfacial interactions to form nanowhiskers in solution. Further aging leads to multi-layered nanowhiskers with greater stability and less instances of π-π sliding of interfacial edge-on …