Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

DFT

Discipline
Institution
Publication Year
Publication

Articles 61 - 83 of 83

Full-Text Articles in Physical Sciences and Mathematics

Probing The Size Dependent Chemical Properties Of Metals In Reduced Dimension, Xiangshi Yin Aug 2014

Probing The Size Dependent Chemical Properties Of Metals In Reduced Dimension, Xiangshi Yin

Doctoral Dissertations

Heterogeneously catalyzed reactions typically start with adsorption and dissociation of reactant molecules on the surface of a solid catalyst. In many instances, this is followed by surface diffusion of the adsorbed species, chemical reaction, and removal of the product molecule. According to the Sabatier principle, optimal catalytic performance requires that the bonding between the adsorbate molecule and the surface should neither be too strong nor too weak. This bonding strength is directly related to the catalyst’s surface electronic structure and hence, electronic structure modification would seem a promising approach for tuning catalytic activity.

There have been many studies along this …


Speciation Behavior Of Americium Higher Oxidation States For The Separation Of Americium From Curium, Catherine Lynn Riddle Aug 2014

Speciation Behavior Of Americium Higher Oxidation States For The Separation Of Americium From Curium, Catherine Lynn Riddle

UNLV Theses, Dissertations, Professional Papers, and Capstones

Several countries are currently expanding the use of nuclear energy as a method for the safe generation of carbon free energy and a number are evaluating starting up a nuclear power program. Closed fuel cycle technologies may be key to waste reduction and a sustainable nuclear energy future and to support the development of more efficient fuel cycles, the investigation of the chemical properties of key actinides is at the forefront of separations research. In this work the characterization of higher oxidation states of americium (Am) has been performed using spectroscopic methods. Americium in the formal oxidation state of Am(V) …


A Theoretical Study Of Interaction Of Nanoparticles With Biomolecule, Chunhui Liu Jan 2014

A Theoretical Study Of Interaction Of Nanoparticles With Biomolecule, Chunhui Liu

Dissertations, Master's Theses and Master's Reports - Open

Many types of materials at nanoscale are currently being used in everyday life. The production and use of such products based on engineered nanomaterials have raised concerns of the possible risks and hazards associated with these nanomaterials. In order to evaluate and gain a better understanding of their effects on living organisms, we have performed first-principles quantum mechanical calculations and molecular dynamics simulations. Specifically, we will investigate the interaction of nanomaterials including semiconducting quantum dots and metallic nanoparticles with various biological molecules, such as dopamine, DNA nucleobases and lipid membranes.

Firstly, interactions of semiconducting CdSe/CdS quantum dots (QDs) with the …


First-Principles Study Of The Electric Field Effect On The Water-Adsorbed Rutile Titanium Dioxide Surface, Abraham L. Hmiel Jan 2014

First-Principles Study Of The Electric Field Effect On The Water-Adsorbed Rutile Titanium Dioxide Surface, Abraham L. Hmiel

Legacy Theses & Dissertations (2009 - 2024)

TiO2 is a semiconducting material that has been used extensively in many industrial applications, and recently has become a candidate for photocatalytic water splitting, fuel cell anode support materials, sensors, and other novel nanodevices. The interface of TiO2 with water, historically well-studied but still poorly understood, presents a ubiquitous environmental challenge towards the ultimate practical usefulness of these technologies. Ground-state density functional theory (DFT) calculations studying the characteristics of molecular adsorption on model surfaces have been studied for decades, showing constant improvement in the description of the energetics and electronic structure at interfaces. These simulations are invaluable in the …


Zinc Environment In Proteins: The Flexible And Reactive Core Of Hiv-1 Ncp7 And The Inhibitory Site Of Caspase-3, A. Gerard Daniel Dec 2013

Zinc Environment In Proteins: The Flexible And Reactive Core Of Hiv-1 Ncp7 And The Inhibitory Site Of Caspase-3, A. Gerard Daniel

Theses and Dissertations

Zinc is an essential cofactor of several proteins. The roles of zinc in these proteins are classified as catalytic, structural or regulatory. Zinc present in structural sites is considered to be a chemically inert, static structural element. On the contrary, previous studies on a C2H2 type zinc finger model compound and the C3H type HIV-1 NCp7 C-terminal zinc knuckle have shown that zinc at these sites can undergo coordination sphere expansion under the influence of a Pt based electrophile. The pentacoordination observed around zinc in these experiments raises an important question: are the structural zinc motifs found in the proteins …


Molecular Dynamics Simulations Using Advanced Sampling And Polarizable Force Fields, Tugba Kucukkal Dec 2013

Molecular Dynamics Simulations Using Advanced Sampling And Polarizable Force Fields, Tugba Kucukkal

All Dissertations

Molecular dynamics (MD) simulations were carried out for aqueous dipeptides, water over self-assembled monolayer (SAM) surfaces, and the nicotinic acetylcholine receptor (nAChR) ion channel. The main goal is to use advanced methods to increase the accuracy of molecular dynamics simulations while seeking solutions to problems relevant to chemistry, biophysics and materials science. In addition, activation energies of several cyclodimerization reactions were studied quantum mechanically. The simulations of the aqueous dipeptides and SAM surfaces involve modeling and detailed analysis of interfacial water, which is of interest to a range of fields from biology to materials science. For example, water has a …


Binding Energies And Solvation Of Organic Molecular Ions, Reactions Of Transition Metal Ions With, And Plasma Discharge Ionization Of Molecular Clusters, Isaac Kwame Attah May 2013

Binding Energies And Solvation Of Organic Molecular Ions, Reactions Of Transition Metal Ions With, And Plasma Discharge Ionization Of Molecular Clusters, Isaac Kwame Attah

Theses and Dissertations

In this dissertation, different approaches have been employed to address the quest of understanding the formation and growth mechanisms of carbon-containing molecular ions with relevance to astrochemistry. Ion mobility mass spectrometry and DFT computations were used to investigate how a second nitrogen in the pyrimidine ring will affect the formation of a covalent bond between the benzene radical cation and the neutral pyrimidine molecule, after it was shown that a stable covalent adduct can be formed between benzene radical cation and the neutral pyridine. Evidence for the formation of a more stable covalent adduct between the benzene radical cation and …


Applications Of Density Functional Theory In Materials Science And Engineering, Manuel Alvarado Jan 2012

Applications Of Density Functional Theory In Materials Science And Engineering, Manuel Alvarado

Open Access Theses & Dissertations

Density Functional Theory (DFT) is a powerful tool that can be used to model various systems in materials science. Our research applies DFT to two problems of interest. First, an organic/inorganic complex dye system known as a Mayan pigment is modeled to determine chemical binding sites, verifying each model with physical data such as UV/Vis spectra. Preliminary studies on palygorskite-based mayan pigments (mayacrom blue, mayacrom purple) show excellent agreement with experimental studies when using a dimer dye geometry binding with tetrahedrally-coordinated aluminum impurity sites in palygorksite. This approach is applied to a sepiolite-based organic/inorganic dye system using thioindigo attached to …


Density Functional Theory Calculations On Hydrated Dimethylarsinic Acid And Iron Oxide Clusters, Adrian Adamescu Jan 2012

Density Functional Theory Calculations On Hydrated Dimethylarsinic Acid And Iron Oxide Clusters, Adrian Adamescu

Theses and Dissertations (Comprehensive)

Dimethylarsinic Acid (DMA) or (CH3)2AsO2H is an important organoarsenical compound detected in arsenic speciation studies of environmental samples and synthesized during pyrolysis of oil shale. DMA was used historically as a herbicide on large agricultural fields and can be detected in the leachates of landfills rich in waste containing arsenic such as glass, alloys, and semiconductors, as well as biologically pre-treated municipal solid waste. Under certain soil conditions DMA can become bio-available and has the potential to be recycled to more toxic inorganic forms of arsenic. Bioavailability of DMA is largely controlled by the …


Energy Functional For Nuclear Masses, Michael Giovanni Bertolli Dec 2011

Energy Functional For Nuclear Masses, Michael Giovanni Bertolli

Doctoral Dissertations

An energy functional is formulated for mass calculations of nuclei across the nuclear chart with major-shell occupations as the relevant degrees of freedom. The functional is based on Hohenberg-Kohn theory. Motivation for its form comes from both phenomenology and relevant microscopic systems, such as the three-level Lipkin Model. A global fit of the 17-parameter functional to nuclear masses yields a root- mean-square deviation of χ[chi] = 1.31 MeV, on the order of other mass models. The construction of the energy functional includes the development of a systematic method for selecting and testing possible functional terms. Nuclear radii are computed within …


Synthesis, Field Emission And Associated Degradation Mechanisms Of Tapered Zno Nanorods, Gregory M. Wrobel Mr. Aug 2011

Synthesis, Field Emission And Associated Degradation Mechanisms Of Tapered Zno Nanorods, Gregory M. Wrobel Mr.

Master's Theses

Equation 1..... 4

Equation 2..... 4

Equation 3..... 6

Equation 4..... 7

Equation 5..... 9

Equation 6..... 10

Equation 7..... 11

Equation 8..... 12

Equation 9..... 14

Equation 10..... 40

Equation 11..... 51

Synthesis, Field Emission and Associated Degradation Mechanisms of Tapered ZnO Nanorods

Gregory Michael Wrobel, M.S.

University of Connecticut, 2011

Modern development of field emitter arrays (FEA) has been made possible, partly thanks to the synthesis and development of one-dimensional (1D) nanostructures. High aspect ratio 1D nanostructures effectively amplify the electric field at the emitter tips, allowing electrons to be extracted at relatively low electric field. An inexpensive …


Electronic Excitations In Ytio3 Using Tddft And Electronic Structure Using A Multiresolution Framework, William Scott Thornton Aug 2011

Electronic Excitations In Ytio3 Using Tddft And Electronic Structure Using A Multiresolution Framework, William Scott Thornton

Doctoral Dissertations

We performed ab initio studies of the electronic excitation spectra of the ferro- magnetic, Mott-insulator YTiO3 using density functional theory (DFT) and time- dependent density functional theory (TDDFT). In the ground state description, we included a Hubbard U to account for the strong correlations present within the d states on the cation. The excitation spectra was calculated using TDDFT linear response formalism in both the optical limit and the limit of large wavevector transfer. In order to identify the local d-d transitions in the response, we also computed the density response of YTiO3 using a novel technique where the basis …


Computational Investigation Of The Bioactive Selenium Compounds Ebselen And Selenious Acid, Sonia Antony Apr 2011

Computational Investigation Of The Bioactive Selenium Compounds Ebselen And Selenious Acid, Sonia Antony

Chemistry & Biochemistry Theses & Dissertations

Selenium, a toxic element, is required in trace quantities for the proper functioning of biological systems. The experimental mechanistic study of the reactions of ebselen and selenious acid is difficult due to complexity of the reaction mixtures and the presence of short-lived intermediates. Computational modeling of the reactivity of these species can give us an insight into their mechanisms, but the process is complicated by proton exchanges associated with the mechanistic steps. In gas phase modeling, this may be corrected to a certain level using the solvent assisted proton exchange (SAPE) method. SAPE is a modeling technique that mimics solvent …


15N Solid-State Nmr Detection Of Flavin Perturbation By H-Bonding In Models And Enzyme Active Sites, Dongtao Cui Jan 2010

15N Solid-State Nmr Detection Of Flavin Perturbation By H-Bonding In Models And Enzyme Active Sites, Dongtao Cui

University of Kentucky Doctoral Dissertations

Massey and Hemmerich proposed that the different reactivities displayed by different flavoenzymes could be achieved as a result of dominance of different flavin ring resonance structures in different binding sites. Thus, the FMN cofactor would engage in different reactions when it had different electronic structures. To test this proposal and understand how different protein sites could produce different flavin electronic structures, we are developing solid-state NMR as a means of characterizing the electronic state of the flavin ring, via the 15N chemical shift tensors of the ring N atoms. These provide information on the frontier orbitals. We propose that …


Epr, Endor And Dft Studies On X-Irradiated Single Crystals Of L-Lysine Monohydrochloride Monohydrate And L-Arginine Monohydrocloride Monohydrate, Yiying Zhou Jul 2009

Epr, Endor And Dft Studies On X-Irradiated Single Crystals Of L-Lysine Monohydrochloride Monohydrate And L-Arginine Monohydrocloride Monohydrate, Yiying Zhou

Physics and Astronomy Dissertations

When proteins and DNA interact, arginine and lysine are the two amino acids most often in close contact with the DNA. In order to understand the radiation damage to DNA in vivo, which is always associated with protein, it is important to learn the radiation chemistry of arginine and lysine independently, and when complexed to DNA. This work studied X-irradiated single crystals of L-lysine monohydrochloride dihydrate (L-lysine·HCl·2H2O) and L-arginine monohydrochloride monohydrate (L-arginine·HCl·H2O) with EPR, ENDOR, EIE techniques and DFT calculations. In both crystal types irradiated at 66K, the carboxyl anion radical and the decarboxylation radical were detected. DFT calculations supported …


Quantum Chemical Investigations Of Nucleophilic Aromatic Substitution Reactions And Acid Dissociations Of Aliphatic Carboxylic Acids, David Henry Schory Jan 2009

Quantum Chemical Investigations Of Nucleophilic Aromatic Substitution Reactions And Acid Dissociations Of Aliphatic Carboxylic Acids, David Henry Schory

Browse all Theses and Dissertations

Quantum chemical analysis was used to examine nucleophilic aromatic substitution reactions of fluorinated benzophenones, diphenyl sulfones, and triphenylphosphine oxides. Some experimental results for these compounds were contrary to conventional wisdom, which holds that calculated atomic charges for the aromatic sites and 13C-NMR and 19F-NMR chemical shifts should allow prediction of the preferred sites for aromatic substitution. Density functional theory (B3LYP/6-31+G*//RM1) and semi-empirical (RM1) quantum chemical calculations were employed to study the intermediates in the reaction pathways in order to identify the preferred paths for aromatic substitution. In most cases studied para substitution pathways had the lower energy intermediates …


Implementation Of Optical Spectra Calculations In Fireball: A Local-Orbital Density Functional Theory Approach, Ivan Grigoryevich Okhrimenko Aug 2008

Implementation Of Optical Spectra Calculations In Fireball: A Local-Orbital Density Functional Theory Approach, Ivan Grigoryevich Okhrimenko

Theses and Dissertations

We have expanded the capabilities of the ab initio tight-binding molecular dynamics package FIREBALL to include calculations of optical properties. Basic zero order approximation is based on transitions between Kohn-Sham states. Corrections for electron-electron interactions are based on time dependant density functional theory (TDDFT). Consistent with the FIREBALL approach, we use precalculated integrals and approximations to make the program faster.


Hydrogenase Inhibition By O2: Density Functional Theory/Molecular Mechanics Investigation, Daniela Dogaru Jan 2008

Hydrogenase Inhibition By O2: Density Functional Theory/Molecular Mechanics Investigation, Daniela Dogaru

ETD Archive

[Fe-Fe]-hydrogenases are enzymes that reversibly catalyze the reduction of protons to molecular hydrogen, which occurs in anaerobic media. In living systems, [Fe-Fe]-hydrogenases shift the reversible reaction towards H2 formation. The [Fe-Fe]-hydrogenase H-cluster is the active site, which contains two iron atoms (Fep-Fed, i.e., proximal and distal iron). Because most experimental and theoretical investigations confirm that the structure of di-iron air inhibited species is FepII-FedII-O-O-H-, O2 has to be prevented from binding to Fed in all di-iron subcluster oxidation states in order to retain a catalytically active enzyme. By understanding the catalytic processes of metalloenzymes, researches are enabled to produce an …


A Theoretical Study For The Reactivation Of O2 Inhibited [Fe-Fe]-Hydrogenase, Stefan Motiu Jan 2008

A Theoretical Study For The Reactivation Of O2 Inhibited [Fe-Fe]-Hydrogenase, Stefan Motiu

ETD Archive

The current investigation presents a reactivation pathway of the exogenously inhibited H-cluster (viz., by O2, or OH-, which metabolizes to H2O), for both vacuum and aqueous enzyme phase. The H-cluster is the catalytic site of [Fe-Fe]-hydrogenase, with the latter extracted from Desulfovibrio desulfuricans (Dd) bacteria. It consists of proximal iron, Fep, and distal Fed subunit, [Fep-Fed], which is bridged by di(thiomethyl)amine (DTMA) ligand, and a proximal cubane subunit, [Fe4-S4]2+p. [Fep-Fed] is coordinated by two cyanides (CN-), two terminal carbonyls (COt), and a bridging carbonyl (COb)*. An Fe atom from [Fe4-S4]2+p connects Fep through a cysteinyl sulfur (of Cys382). Density functional …


X-Irradiation Of Dna Components In The Solid State: Experimental And Computational Studies Of Stabilized Radicals In Guanine Derivatives, Nayana Kumudini Jayatilaka May 2006

X-Irradiation Of Dna Components In The Solid State: Experimental And Computational Studies Of Stabilized Radicals In Guanine Derivatives, Nayana Kumudini Jayatilaka

Physics and Astronomy Dissertations

Single crystals of sodium salt of guanosine dihydrate and 9 Ethyl Guanine were X-irradiated with the objective of identifying the radical products. Study with K-band EPR, ENDOR, and ENDOR-Induced EPR techniques indicated at least four radical species to appear in both crystals in the temperature range of 6K to room temperature. Three of these radicals (Radicals R1, R2, and R3) were present immediately after irradiation at 6K. Computational chemistry and EPR spectrum simulation methods were also used to assist in radical identifications. Radical R1, the product of net hydrogen addition to N7, and Radical R2, the product of electron loss …


Ab Initio Molecular Dynamics Simulations Of Methylaluminoxane (Mao) Synthesis By Hydrolysis Of Trimethylaluminum, Lacramioara Negureanu Jan 2006

Ab Initio Molecular Dynamics Simulations Of Methylaluminoxane (Mao) Synthesis By Hydrolysis Of Trimethylaluminum, Lacramioara Negureanu

LSU Doctoral Dissertations

MAO is the co-catalyst in the metallocene catalytic systems, which are widely used in single site olefin polymerization due to their high stereoselectivity. To date, the precise structure of MAO, the particular compound or compounds catalytically active in MAO, have eluded researchers. MAO, a white amorphous powder, is not a good sample for a direct spectroscopic characterization, and its NMR spectra are broad and almost featureless. Many structural models have been proposed but none are generally accepted. In the first part of this work the MAO formation mechanism was addressed. Molecular dynamics simulations at MP2 configuration interaction theory level have …


Potential Energy Surface Around The Tropylium Ion., Kenneth Wayne Bullins Aug 2005

Potential Energy Surface Around The Tropylium Ion., Kenneth Wayne Bullins

Electronic Theses and Dissertations

The formation of the tropylium ion, C7H7+, in the mass spectrum of toluene is a chemical process that has been studied extensively in the past. The advances in computational power of personal computers have made the investigation of the pathway to form this ion and its subsequent decomposition feasible at a fairly high level of theory. The calculations that we performed were at the HF/6-31G (d, p) and the B3LYP/6-311++G (2d) levels. This work will show areas of the potential energy surface around the highly symmetric tropylium ion to give a glance of possible mechanisms …


Thermochemistry And Kinetics In Pyrolysis And Oxidation Of Oxygenated Chlorocarbons And Chlorinated Aromatics, Li Zhu Jan 2003

Thermochemistry And Kinetics In Pyrolysis And Oxidation Of Oxygenated Chlorocarbons And Chlorinated Aromatics, Li Zhu

Dissertations

Thermochemical. properties, ΔfH°298, S°298, and Cp°(T) (5<=T/K<=6000), are determined using different ab inifio and density functional theory methods for three chloromethyl radicals, CH2Cl, CHCl2, CCl3, all chlorobenzenes from monochlorobenzene to hexachlorobenzene, and all chlorophenols from ortho-, meta-, para-chlorophenol to pentachlorophenol. The B3LYP/6-31G(d,p) method is used in the structure optimization. The B3LYP/6-31G(3df,2p), QCISD(T)/6-3 I G(d,p), and CB S-Q methods are used in single point calculations of total electronic energies. Harmonic vibration frequencies are scaled for zero point energies and thermal corrections. Isodesmic reaction(s) are utilized at each calculation level to determine ΔfH°298 of each species. Contributions to S°298 and Cp°(T) from …