Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 159

Full-Text Articles in Physical Sciences and Mathematics

Formation Of Reactive Nitrogen Species During Dichloramine Decay And Their Impact On N Nitrosodimethylamine Formation Under Drinking Water Conditions, Huong Thu Pham Dec 2021

Formation Of Reactive Nitrogen Species During Dichloramine Decay And Their Impact On N Nitrosodimethylamine Formation Under Drinking Water Conditions, Huong Thu Pham

Graduate Theses and Dissertations

NDMA occurrence and formation pathways in drinking water systems are reviewed and NDMA yields are compared on the basis of disinfectant type, water chemistry, and precursor category. In chloramination, despite monochloramine being the predominant species between pH 7-9, evidence suggests that dichloramine is the primary species involved in NDMA formation. This is somewhat confounding as NDMA yields are maximal at pH 9, yet at pH 9 dichloramine decays faster than it forms and hence is present at trace levels; additionally, the proposed mechanism involves a spin-forbidden incorporation of dissolved oxygen as a triplet, which is presumably kinetically slow. This review …


Effects Of Localized Oxygen Production By Electrolysis On The First-Generation Glucose Sensor Response, Nandita Halder Dec 2021

Effects Of Localized Oxygen Production By Electrolysis On The First-Generation Glucose Sensor Response, Nandita Halder

Graduate Theses and Dissertations

Glucose sensors are very important for detecting blood glucose both in vitro and in vivo. First-generation glucose biosensors were based on the glucose oxidase (GOx) enzyme using molecular oxygen as the electron acceptor and therefore oxygen dependent. Unfortunately for in-vivo work, oxygen in the body is variable and limited. Alternative approaches to overcome the oxygen dependency came with their own limitations. The widely used and commercially available ex-vivo glucose test strip uses a mediator in place of oxygen to free it from oxygen dependency. The mediator-based technology, in most cases cannot be transferred to in vivo applications due to the …


Engineering Fluorescently Labeled Human Fibroblast Growth Factor One Mutants And Characterizing Their Photophysics Properties Towards Designing Fret Assays, Mamello Mohale Dec 2021

Engineering Fluorescently Labeled Human Fibroblast Growth Factor One Mutants And Characterizing Their Photophysics Properties Towards Designing Fret Assays, Mamello Mohale

Graduate Theses and Dissertations

Human fibroblast growth factor one (hFGF1) belongs to a family of 22 FGF members produced by fibroblast cells. Cell signaling during physiological processes of angiogenesis and wound healing occurs when hFGF1 binds to its receptor (FGFR). However, when heterogenous homeostasis is not maintained, fibroblast cells exhibit excessive proliferation which can lead to a myriad of cancers. smFRET is an ultrasensitive distant dependent (1-10 nm) technique capable of resolving such heterogeneity in structural dynamics and binding affinities (Kd). Therefore, we successfully designed and characterized fluorescently labeled hFGF1 tracers which span the visible light region of the electromagnetic spectrum for use in …


Experimental And Computational Studies Of Electron Rich Alkenes, Alexa May Dec 2021

Experimental And Computational Studies Of Electron Rich Alkenes, Alexa May

Graduate Theses and Dissertations

Thermal homolysis is one of the most fundamental reactions in organic chemistry. Free radical reactions are generally initiated by light or a radical initiator to generate the first radical, which can then propagate or terminate the reaction. Direct thermal homolysis requires no chemical initiators, just an increase in temperature depending on the homolysis energy.There are few studies of direct radical homolysis in complex systems or under mild conditions. The reactions involving C-N homolysis under mild conditions are reported in Chapter 1. Though the authors do not all propose a radical mechanism, we believe they can all be explained by a …


Synthesis Of Polyethylene Glycol-Based Hydrogels And Silver/Gold Nanostructures For Biomedical Applications, Isabelle Ishimwe Niyonshuti Dec 2021

Synthesis Of Polyethylene Glycol-Based Hydrogels And Silver/Gold Nanostructures For Biomedical Applications, Isabelle Ishimwe Niyonshuti

Graduate Theses and Dissertations

This work focuses on the synthesis of biocompatible polyethylene glycol (PEG)-based hydrogels, silver nanoparticles (AgNPs), and silver-gold nanocages (Ag-AuNCs) for biomedical applications. The dissertation includes two parts with Part I on the work of PEG-based hydrogel for wound healing applications and Part II on the work of Ag/Au nanostructures for antimicrobial applications. Part I studies PEG-based hydrogel for the delivery of fibroblast growth factors (FGFs) for wound healing applications, aiming to overcome the challenge of designing hydrogels capable of the sustained release of bioactive FGFs. This research develops new biocompatible anionic injectable hydrogel formulations based on Poly (Oligo Ethylene Glycol …


Identification Of Phosphorous Loading Point Source Facilities To 303(D) Listed Nutrient Impaired Waters Through Watershed Delineation Using Arcgis For Life Cycle Assessment Applications, John Zimmerman Dec 2021

Identification Of Phosphorous Loading Point Source Facilities To 303(D) Listed Nutrient Impaired Waters Through Watershed Delineation Using Arcgis For Life Cycle Assessment Applications, John Zimmerman

Chemical Engineering Undergraduate Honors Theses

The work done for this project is part of a larger “life cycle assessment (LCA) of novel electrochemical phosphorus recovery technology at the wastewater treatment plant and U.S. watershed scales” (Morrissey 2019). The goal of that LCA is to determine “environmental impacts of implementing electrochemical struvite recovery at the wastewater treatment plant, U.S watershed, and global scales” (Morrissey 2019). This project’s goal is to identify locations deemed more sensitive to eutrophication impacts. The results will be used as part of the life cycle inventory (LCI) accounting for geographically explicit phosphorus flows. The waters identified as impaired were sourced from the …


Multifunctional Programmable Self-Assembled Nanoparticles In Nanomedicine, Yoshie Sakamaki Dec 2021

Multifunctional Programmable Self-Assembled Nanoparticles In Nanomedicine, Yoshie Sakamaki

Graduate Theses and Dissertations

Developing methodologies to control the architecture of nanoparticles (NPs) at the atomic level prevents their inhomogeneity and leads to a variety of expected functions. Rationally designed nanoparticles can either be programmed or crystallized structures into pre-determined structures achieving tunable particle pore size and physiochemistry. In this dissertation, two broad classes of multifunctional nanoparticles are developed, metal-organic frameworks and DNA-NP aggregates.

Metal-organic frameworks are a novel class of highly porous crystalline materials built from organic linkers and metal cluster-based secondary building units. However, applications in bioremediation have not been developed very well especially in applications regarding drug delivery systems (DDS). The …


Design, Synthesis, And Catalytic Application Of Crystalline Porous Nanomaterials, Zainab Abdullah Almansaf Dec 2021

Design, Synthesis, And Catalytic Application Of Crystalline Porous Nanomaterials, Zainab Abdullah Almansaf

Graduate Theses and Dissertations

Chapter 1: COFs (covalent organic frameworks) are a new type of microporous crystalline polymer connected by organic units via strong covalent bonds. Due to their well-defined crystalline structures and excellent chemical and thermal stabilities, COF materials are considered promising candidates in applications such as gas adsorption, catalysis, and energy storage.Chapter 2: A new covalent organic framework (COF) based on imine bonds was assembled from 2-(4-formylphenyl)-5-formylpyridine and 1,3,6,8-tetrakis(4-aminophenyl)pyrene, which showed an interesting dual-pore structure with high crystallinity. Postmetallation of the COF with Pt occurred selectively at the N donor (imine and pyridyl) in the larger pores. The metalated COF served as …


Catalytic Activity Of Molybdenum-Dioxo Complexes, Randy Tran Dec 2021

Catalytic Activity Of Molybdenum-Dioxo Complexes, Randy Tran

Graduate Theses and Dissertations

This dissertation details the development of rationally designed dioxomolybdenum catalyst active for deoxydehydration (DODH), the net reduction of diols and polyols into alkenes and dienes. Catalyst design involved variations on dioxomolybdenum(VI) supported by a dianionic meridional pincer ligand. Rational substrate scope was explored using aliphatic diols, aromatic diols, and biomass derived diols. Various reductants were tested for ability to catalyze the reaction. The substrate specific mechanism of DODH was explored utilizing NMR and in-situ infrared spectroscopy and important rate constants and rate determining steps were found to aid in the optimization of ideal reaction conditions. Catalytic activity was observed to …


Phase-Field Modeling Of The Polymer Membrane Formation Process For Micro- And Ultra-Filtration, Michael Rosario Cervellere Jul 2021

Phase-Field Modeling Of The Polymer Membrane Formation Process For Micro- And Ultra-Filtration, Michael Rosario Cervellere

Graduate Theses and Dissertations

Porous polymer membrane filters are widely used in separation and filtration process. Micro- and ultra-filtration membranes are commonly used in biopharmaceutical applications such as filtering viruses and separating proteins from a carrier solution. The formation of these membrane filters via phase inversion is a complex and interconnected process where varying casting conditions can have a wide variety of effects on the final membrane morphol- ogy. Tailoring membrane filters for specific performance characteristics is a tedious and time consuming process. The time and length scales of membrane formation make it extremely difficult to experimentally observe membrane formation. Modeling the membrane formation …


Investigation Of Factors Influencing Recombination Versus Disproportionation Of Complex Radicals Formed By C-N Homolysis Of Breslow Type Intermediates And Related Compounds, Taylor Burnett Jul 2021

Investigation Of Factors Influencing Recombination Versus Disproportionation Of Complex Radicals Formed By C-N Homolysis Of Breslow Type Intermediates And Related Compounds, Taylor Burnett

Graduate Theses and Dissertations

Electron rich enamines are capable of C-N bond homolysis and subsequent recombination and/or disproportionation. It is unclear what causes these radicals to undergo recombination or disproportionation. Density Functional Theory (DFT) calculations do not provide a transition state for the recombination and disproportionation processes and therefore they cannot be used to predict the favorable reaction. Breslow intermediates formed by deprotonation of thiazolium salts and reaction with aromatic aldehydes are examples of electron rich enamines. These breslow intermediates can undergo C-N bond homolysis to form a radical pair the either recombine or disproportionate. Upon investigation of the factors influencing recombination and disproportionation, …


Electrochemical Deposition In Energy Storage Devices, Witness Atutala Martin Jul 2021

Electrochemical Deposition In Energy Storage Devices, Witness Atutala Martin

Graduate Theses and Dissertations

Metals, whether in a solid or soluble ion form, are a vital part of any electrochemical storage system. More so, Li metal is widely considered as the ideal anode because of its low density and low electrochemical potential (-3.04 V vs. the standard hydrogen electrode – SHE). However, just like most metals, it does not plate or strip evenly during cycling which can lead to cycling performance issues, short cycling lifespans, and even safety concerns brought about by dendrites that can cause internal short-circuiting within cells. This research focused on investigating the electroplating of metals in both aqueous and non-aqueous …


Microfabrication And Electrochemical Characterization Of A Novel Su-8 Probe With An Array Of Individually Addressable Electrodes Suitable For Redox Cycling Experiments In Ultra-Small Volumes, Mahsa Lotfi Marchoubeh Jul 2021

Microfabrication And Electrochemical Characterization Of A Novel Su-8 Probe With An Array Of Individually Addressable Electrodes Suitable For Redox Cycling Experiments In Ultra-Small Volumes, Mahsa Lotfi Marchoubeh

Graduate Theses and Dissertations

Redox cycling is an electrochemical technique that utilizes closely spaced generator and collector electrodes to cycle reversible redox species between their oxidative states. With advantages in signal amplification, selectivity of species based on their electrochemical reaction mechanism, and limited or no background subtraction, this technique is well suited for selective detection of important electrochemically active molecules such as dopamine at basal or slowly changing levels.

Miniaturized medical devices have become an area of great interest for measurement of chemicals in limited volumes with low concentrations or in sensitive tissues. A probe on a polymeric SU-8 substrate with suitable dimensions and …


Biochemical Characterization Of Small Molecule Inhibitor Binding On A Ras Related Gtpase And Its Effector Interactions, Djamali Muhoza May 2021

Biochemical Characterization Of Small Molecule Inhibitor Binding On A Ras Related Gtpase And Its Effector Interactions, Djamali Muhoza

Graduate Theses and Dissertations

The Ras superfamily of GTPases has 167 proteins that are involved in various cellular processes such as proliferation, transformation, migration, and inhibition of cell death. Mutations, abnormal expression, and function of these proteins are observed in many diseases, including several forms of cancer. Even though these GTPases were among the first discovered oncogenes, no successful Ras drug candidate has successfully passed clinical trials. Drugs targeting these proteins have failed mainly because of the complexity of their regulation, their high affinity to GTP, and their structure’s dynamic nature. Recently, novel promising targeting approaches have renewed interest in the Ras drug discovery …


Development Of Biomaterials For Drug Delivery, Raquel De Castro May 2021

Development Of Biomaterials For Drug Delivery, Raquel De Castro

Graduate Theses and Dissertations

Drug delivery systems (DDS) have highly evolved in the last decades with the development of hydrogels and nanoparticles. However, high systemic uptake, side effects, low bioavailability, and encapsulation efficiency continue to be a major hurdle faced by such DDSs.

Nanoparticles and hydrogels can be specifically designed for targeted DDSs to mitigate some of the problems. This dissertation aimed to design two DDSs for ocular drug delivery and one for cancer treatment. The first project sought to develop chitosan nanoparticles (Cs-NP) using PEGDA as a copolymer to encapsulate gentamicin (GtS) for ocular drug delivery. Cs-NPs contain positive charges that can interact …


Synthesis Of Bulky And Polar Galactonoamidines For The Inhibition Of The Human Α-Galactosidase, Ifedi Orizu May 2021

Synthesis Of Bulky And Polar Galactonoamidines For The Inhibition Of The Human Α-Galactosidase, Ifedi Orizu

Graduate Theses and Dissertations

Glycosidases are amongst the most abundant enzymes in nature. This is due to their role in the degradation of carbohydrates which are the major source of carbon or earth. The absence or malfunction of glycosidases is implicated in numerous diseases such as cancers, diabetes, and lysosomal storage disorders, which make them important drug targets for study in medicinal chemistry. The seminal work by Pauling and Wolfenden showed that enzymes bind to their substrate at the transition state with very strong affinity. Wolfenden estimated the dissociation constant to be around 10-22M. This encouraged the design of glycosidase inhibitors which mimicked one …


Comparative Analysis Of Azo Dye Restriction In The International Textile Industry, Kayla Demark May 2021

Comparative Analysis Of Azo Dye Restriction In The International Textile Industry, Kayla Demark

Apparel Merchandising and Product Development Undergraduate Honors Theses

Azo dyes are the most used type of dye in the textile industry. Some of these dyes have the potential to be extremely toxic to both human health and the environment. While regulations of these dyes vary across the world, it is suggested that not enough is being done to protect consumers and the environment from potentially harmful azo dyes (Rawat et al., 2016). It is the responsibility of apparel companies to ensure that their products that contain azo dyes are safe for consumers.

The purpose of this study was to understand how azo dyes and their by-products are restricted …


Electrochemical Oxidation Of Individual Silver Nanoparticles: Exploring The Effect Of Particle Shape, Capping Ligand, Electrolyte, And Potential On The Signal, Jazlynn Sikes May 2021

Electrochemical Oxidation Of Individual Silver Nanoparticles: Exploring The Effect Of Particle Shape, Capping Ligand, Electrolyte, And Potential On The Signal, Jazlynn Sikes

Graduate Theses and Dissertations

Nanomaterials have revolutionized science and technology. Their unique properties can be exploited, and nanoparticles are being used as catalysts, antimicrobials, drug delivery vehicles, sensors, and more. However, the fundamental properties of nanomaterials and their interactions with their surrounding environments are still poorly understood. In this work, a single-particle approach was used to observe the effects of capping ligand, surrounding solution, and particle shape on the oxidative process to gain deeper understanding of silver nanoparticle properties. When allowed the opportunity, the particles will adsorb to the electrode surface then oxidize in rapid succession upon electrode activation, regardless of capping ligand as …


Developing A Microdialysis Sampling-Based Biofilm/Macrophage Co-Culture Model, Alda Diaz Perez May 2021

Developing A Microdialysis Sampling-Based Biofilm/Macrophage Co-Culture Model, Alda Diaz Perez

Graduate Theses and Dissertations

The host immune system and bacterial cells are known to interact during the human lifetime. Bacteria secrete a wide variety of signaling molecules, known as quorum sensing (QSC) molecules, that modulate the host immune system. While immune-biofilm interactions involve this chemical signaling network, the mechanisms through which this occurs are not well understood. This work aimed to develop a new method that can be used not only in vitro settings but also in vivo. The microdialysis sampling technique has widely been used in in vitro and in vivo settings in humans, mice, and rats for the collection of neuropeptides, cytokines, …


An Experimental Study Of Evaporites On Titan: Implications For Lake Composition And Future Missions, Ellen Czaplinski Jan 2021

An Experimental Study Of Evaporites On Titan: Implications For Lake Composition And Future Missions, Ellen Czaplinski

Graduate Theses and Dissertations

Titan is the only other planetary body in the solar system with liquid on the surface. With a surface temperature and pressure of 89 – 94 K and 1.5 bar (N2), respectively, Titan’s lakes are comprised of liquid hydrocarbons, predominantly methane and ethane. Over time, Titan’s lakes may evaporate, leaving behind residual deposits (evaporites). The evaporation processes and composition of the evaporites is poorly understood. I address these outstanding questions by experimentally investigating the physical and spectral properties of evaporites at Titan surface conditions using an experimental chamber.

Chapter 1 addresses the formation of ethylene evaporites. Ethylene evaporites form more …


Corn And Soybean Response To Wastewater-Recycled Phosphorus Fertilizers, Shane Ylagan Dec 2020

Corn And Soybean Response To Wastewater-Recycled Phosphorus Fertilizers, Shane Ylagan

Crop, Soil and Environmental Sciences Undergraduate Honors Theses

The ability to recycle phosphorus (P) from wastewaters could provide a sustainable, continuous source of P that might also help protect surface water quality from P enrichment. The mineral struvite (MgNH4PO4·6H2O) is an understudied material that can be created from Pcontaining wastewater and has been shown to have agricultural fertilizer value. The objective of this study was to evaluate the effects of electrochemically precipitated struvite (ECST), chemically precipitated struvite (Crystal Green; CG), diammonium phosphate (DAP), monoammonium phosphate (MAP), rock phosphate (RP), and triple super phosphate (TSP) on corn (Zea mays) and soybean (Glycine max) response in a 79-day greenhouse pot …


Predicting The Hydration Free Energy Of Small Alkanes And Alcohols From Custom, Electronic Structure-Based Force Fields, T. Ryan Rogers Dec 2020

Predicting The Hydration Free Energy Of Small Alkanes And Alcohols From Custom, Electronic Structure-Based Force Fields, T. Ryan Rogers

Graduate Theses and Dissertations

Mathematical theories reveal the fundamental physics involved in experimentalphenomena. Computer models of such theories are routinely used to corroborate or explain experiments and predict properties of chemical systems. Therefore, an important effort in computational chemistry is the development of more accurate and efficient chemical models. Current-generation models are only beginning to approach experimental-quality predictions of hydration free energies (HFEs).Using computations of quantum mechanical (QM) forces and classical simulations based on these forces, I investigate models to predict several properties of solutes and solutions. This dissertation is a collection of projects exemplifying methods used to gain insight into chemical systems.

Simulations …


Thiophene Derivative Monomers Co-Electropolymerized On Microelectrodes Within Arrays For Tailored Surface Chemistry And Electrochemical Properties, Benjamin J. Jones Jul 2020

Thiophene Derivative Monomers Co-Electropolymerized On Microelectrodes Within Arrays For Tailored Surface Chemistry And Electrochemical Properties, Benjamin J. Jones

Graduate Theses and Dissertations

Potentiodynamic co-electropolymerization of two thiophene derivatives, (2,3-dihydrothieno[3,4-b]dioxin-2-yl)methanol (1) and 4-((2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)-methoxy)-4-oxobutanoic acid (2), in aqueous solutions (0.02 M total monomer, 0.05 M sodium dodecyl sulfate (SDS) and 0.1 M LiClO4) on gold microband electrodes in an array was investigated. A modified Steglich esterification reaction between monomer 1 and succinic anhydride produced monomer 2 at 93.6% yield. Seven deposition solutions of the two monomers, defined by mol% of monomer 2 (0, 25, 34, 50, 66, 75, 100) generated seven sets of polymer films by cyclic voltammetry in a specially designed cell to conserve monomer. The onset potential for monomer oxidation and total …


Elucidating Collagen Degradation Synergy Between Col G And Col H From Hathewaya (Clostridium) Histolytica And Identifying Novel Structural Features In Hpt And Rec Domains From Vars Histidine Kinase In V. Alginolyticus, Perry Caviness Jul 2020

Elucidating Collagen Degradation Synergy Between Col G And Col H From Hathewaya (Clostridium) Histolytica And Identifying Novel Structural Features In Hpt And Rec Domains From Vars Histidine Kinase In V. Alginolyticus, Perry Caviness

Graduate Theses and Dissertations

In this research the mechanisms by which Hathewaya (Clostridia) histolytica collagenases are secreted and work together to degrade collagens are investigated. While H. histolytica collagenases Col G and Col H have similar multi-domain structures the difference in number of and orientation of the domains hint that the two target different regions in collagen. Study small angle x-ray scattering (SAXS) was used to give a low-resolution envelope of full-length Col G and Col H and Col G/Col H non-catalytic domains bound to a collagen-like peptide (mini-collagen). SAXS derived envelopes along with structural information was used to tease out the mechanisms by …


An Experimental Investigation Of Liquid Hydrocarbons In A Simulated Titan Environment, Kendra Farnsworth Jul 2020

An Experimental Investigation Of Liquid Hydrocarbons In A Simulated Titan Environment, Kendra Farnsworth

Graduate Theses and Dissertations

Saturn’s moon, Titan, has surface conditions (89–94 K, 1.5-bar atmosphere) that permit lakes of methane, ethane, and dissolved atmospheric nitrogen. The effects of atmospheric nitrogen on methane-ethane liquid properties is poorly understood, leading to uncertainty in Titan modeling. I address this question by experimentally investigating the physical properties of methane-ethane liquids under a 1.5-bar nitrogen atmosphere in a simulated Titan environmental chamber.

Chapter 1 addresses nitrogen dissolution kinetics in Titan’s liquid hydrocarbons. I found an exponential increase in nitrogen quantity and diffusion coefficients with increasing methane mol%. I find that Titan’s liquids are likely not saturated in nitrogen, with dissolution …


Understanding The Interfacial Reactions Initiating On Lithium Metal Surfaces In Next-Generation Battery Technologies, Joshua A. Lochala Jul 2020

Understanding The Interfacial Reactions Initiating On Lithium Metal Surfaces In Next-Generation Battery Technologies, Joshua A. Lochala

Graduate Theses and Dissertations

Li-ion batteries have started to reach the theoretical maximum energy. Next-generation batteries represent the future of portable energy sources for vehicle electrification and grid energy storage. Li metal battery is one of the most promising next-generation battery technologies that could potentially double the cell-level energy of conventional Li-ion batteries. However, Li metal has multiple drawbacks that require addressing before realization. These drawbacks include dendrite formation leading to internal short and increasing internal resistance due to the breakdown of electrolyte, leading to rapid cell death. These problems stem from the interfacial reactions occurring during the plating and stripping of Li metal. …


Investigation Of The Structural, Electronic, And Thermoelectric Properties Of Mono- Chalcogenides, Aida Sheibani Jul 2020

Investigation Of The Structural, Electronic, And Thermoelectric Properties Of Mono- Chalcogenides, Aida Sheibani

Graduate Theses and Dissertations

The structural, electronic, and thermoelectric properties of GeTe are studied using density functional theory and Boltzmann transport equations. This material has a rhombohedral crystal structure in ambient temperature with a ferroelectric behavior due to lack of inversion symmetry. This study suggests that the presence of asymmetry in GeTe can lead to an improvement in the thermoelectric properties of this material. In addition, studies on introducing Group III, IV, and V dopants to GeSe show that while these impurities can improve the power factor and decrease the lattice thermal conductivity, they cannot enhance the figure of merit.


Ensemble And Single Particle Studies Of Cation Exchange In Cuins2/Zns Qds And Their Application In Super-Resolution Imaging, Anh Tue Nguyen Jul 2020

Ensemble And Single Particle Studies Of Cation Exchange In Cuins2/Zns Qds And Their Application In Super-Resolution Imaging, Anh Tue Nguyen

Graduate Theses and Dissertations

Colloidal quantum dots (QDs) have great potential in many applications such as bioimaging, light emitting diodes, solar cells and lasers. However, a great number of studies have been focused on Cd based (II-VI) and Pb (IV-VI) based materials which are not suitable for mass production. Therefore, alternative types of QD containing less toxic materials have been introduced, including CuInS2 QDs. This I-III-VI semiconductor nanocrystals also attract lots of attention due to their large Stock shift, long fluorescence lifetime and high defect tolerance, making them attractive emitters for applications in bioimaging, photovoltaics and light emitting diodes.

In the first project, we …


Understanding Ice Mixtures Under Pluto Simulated Conditions And Their Implications For Geophysical Processes, Caitlin Joannah Ahrens May 2020

Understanding Ice Mixtures Under Pluto Simulated Conditions And Their Implications For Geophysical Processes, Caitlin Joannah Ahrens

Graduate Theses and Dissertations

New Horizons at Pluto has given the planetary science community the first images of Pluto’s surface, including geologic wonders and compositional variability. Methane, nitrogen, and carbon monoxide make up the bulk of the volatile plutonian surface along with water ice. In this work, these three main volatiles are specifically investigated in the laboratory setting to understand the spectral properties and behavior of binary and ternary mixtures. The spectra are taken in the near-infrared wavelengths (1 – 2.5 µm) using Fourier transform infrared (FTIR) spectroscopy techniques utilizing the Pluto Simulation Chamber housed at the University of Arkansas, which can reach conditions …


In Situ Plant Uptake Of Excess Nutrients And Consequential Alteration Of Rhizosphere Dynamics, Srusti Maddala May 2020

In Situ Plant Uptake Of Excess Nutrients And Consequential Alteration Of Rhizosphere Dynamics, Srusti Maddala

Crop, Soil and Environmental Sciences Undergraduate Honors Theses

The use of phytoremediation in ecological remediation projects has numerous benefits including soil stabilization and nutrient uptake. Recently, microdialysis, a diffusion-based sampling technique commonly used in biomedical research, has been recognized as a candidate for monitoring chemical changes in the rhizosphere. The real-time, in situ data it provides about nutrient diffusion may improve the management and success of restoration projects. Therefore, the objective of this study was to employ the technique of microdialysis in the novel application of quantifying the diffusive flux of inorganic nitrogen compounds in the rhizosphere of native plants of Arkansas. The microdialysis technique was first optimized …