Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Measurement Of Near-Threshold Proton Branching Ratios In 31s Important For Novae, Sudarsan Balakrishnan Jan 2023

Measurement Of Near-Threshold Proton Branching Ratios In 31s Important For Novae, Sudarsan Balakrishnan

LSU Doctoral Dissertations

Classical novae are stellar explosions that contribute to the nucleosynthesis of isotopes on the proton-rich side of the valley of stability up to 40Ca. In ONe novae, the incompletely understood reaction rate of 30P(p,γ)31S is known to strongly influence the production rate of several stable isotopes such as 30Si, 31P, and 32,33,34S. A precise measurement of this reaction rate has several potential implications towards matching astrophysical observables to the physical composition of the nova site -- the observed elemental abundance ratios of O/S and S/Al have been suggested as useful `thermometers' to gauge …


Studying The Reaction 34ar(Alpha,P)37k And Its Impact On Xrb Nucleosynthesis And Observables, Amber C. Lauer Oct 2017

Studying The Reaction 34ar(Alpha,P)37k And Its Impact On Xrb Nucleosynthesis And Observables, Amber C. Lauer

LSU Doctoral Dissertations

Type I X-Ray bursts (XRB’s) are a site of nucleosynthesis for some proton-rich elements up to A=100. These stellar explosions occur on the surface of a neutron star in a Low- Mass X-ray Binary accreting H- and He-rich material. During accretion nuclear burning occurs through stable processes such as the hot CNO (HCNO) cycles, but at some critical accretion condition the the HCNO cycles are bypassed through a breakout reaction. This triggers the thermonuclear runaway of the XRB. During the burst, nucleosynthesis on certain proton-rich nuclei, called (α, p) waiting points, can stall which could stall the energy generation and …


Nuclear Structure Of 26si And 32cl For Astrophysics, Liudmyla Afanasieva Jan 2015

Nuclear Structure Of 26si And 32cl For Astrophysics, Liudmyla Afanasieva

LSU Doctoral Dissertations

We studied the nuclear structure of two isotopes, 26Si and 32Cl, important for understanding stellar explosions like novae and Type I X-ray bursts. The 31S(p,γ)32Cl reaction rate influences the enrichment of sulfur observed in some nova ejecta, but the uncertainty in the rate spans as much as an order of magnitude and arises from uncertainties in the properties of resonances corresponding to excited states in 32Cl. We populated states in 32Cl via the 10B(24Mg,2n)32Cl reaction using the Argonne Tandem-Linac Accelerator System (ATLAS), with a 75 MeV beam of 24Mg bombarding a 200 μg/cm2 10B target. Gamma rays emitted from recoiling …