Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering Faculty Articles and Research

Discipline
Keyword
Publication Year

Articles 1 - 30 of 89

Full-Text Articles in Physical Sciences and Mathematics

Detecting Drifts In Data Streams Using Kullback-Leibler (Kl) Divergence Measure For Data Engineering Applications, Jeomoan Francis Kurian, Mohamed Allali May 2024

Detecting Drifts In Data Streams Using Kullback-Leibler (Kl) Divergence Measure For Data Engineering Applications, Jeomoan Francis Kurian, Mohamed Allali

Engineering Faculty Articles and Research

The exponential growth of data coupled with the widespread application of artificial intelligence(AI) presents organizations with challenges in upholding data accuracy, especially within data engineering functions. While the Extraction, Transformation, and Loading process addresses error-free data ingestion, validating the content within data streams remains a challenge. Prompt detection and remediation of data issues are crucial, especially in automated analytical environments driven by AI. To address these issues, this study focuses on detecting drifts in data distributions and divergence within data fields processed from different sample populations. Using a hypothetical banking scenario, we illustrate the impact of data drift on automated …


Toward Intuitive 3d Interactions In Virtual Reality: A Deep Learning- Based Dual-Hand Gesture Recognition Approach, Trudi Di Qi, Franceli L. Cibrian, Meghna Raswan, Tyler Kay, Hector M. Camarillo-Abad, Yuxin Wen May 2024

Toward Intuitive 3d Interactions In Virtual Reality: A Deep Learning- Based Dual-Hand Gesture Recognition Approach, Trudi Di Qi, Franceli L. Cibrian, Meghna Raswan, Tyler Kay, Hector M. Camarillo-Abad, Yuxin Wen

Engineering Faculty Articles and Research

Dual-hand gesture recognition is crucial for intuitive 3D interactions in virtual reality (VR), allowing the user to interact with virtual objects naturally through gestures using both handheld controllers. While deep learning and sensor-based technology have proven effective in recognizing single-hand gestures for 3D interactions, research on dual-hand gesture recognition for VR interactions is still underexplored. In this work, we introduce CWT-CNN-TCN, a novel deep learning model that combines a 2D Convolution Neural Network (CNN) with Continuous Wavelet Transformation (CWT) and a Temporal Convolution Network (TCN). This model can simultaneously extract features from the time-frequency domain and capture long-term dependencies using …


Ultrasoft Platelet-Like Particles Stop Bleeding In Rodent And Porcine Models Of Trauma, Kimberly Nellenbach, Emily Mihalko, Seema Nandi, Drew W. Koch, Jagathpala Shetty, Leandra Moretti, Jennifer Sollinger, Nina Moiseiwitsch, Ana Sheridan, Sanika Pandit, Maureane Hoffman, Lauren V. Schnabel, L. Andrew Lyon, Thomas H. Barker, Ashley C. Brown Apr 2024

Ultrasoft Platelet-Like Particles Stop Bleeding In Rodent And Porcine Models Of Trauma, Kimberly Nellenbach, Emily Mihalko, Seema Nandi, Drew W. Koch, Jagathpala Shetty, Leandra Moretti, Jennifer Sollinger, Nina Moiseiwitsch, Ana Sheridan, Sanika Pandit, Maureane Hoffman, Lauren V. Schnabel, L. Andrew Lyon, Thomas H. Barker, Ashley C. Brown

Engineering Faculty Articles and Research

Uncontrolled bleeding after trauma represents a substantial clinical problem. The current standard of care to treat bleeding after trauma is transfusion of blood products including platelets; however, donated platelets have a short shelf life, are in limited supply, and carry immunogenicity and contamination risks. Consequently, there is a critical need to develop hemostatic platelet alternatives. To this end, we developed synthetic platelet-like particles (PLPs), formulated by functionalizing highly deformable microgel particles composed of ultralow cross-linked poly (N-isopropylacrylamide) with fibrin-binding ligands. The fibrin-binding ligand was designed to target to wound sites, and the cross-linking of fibrin polymers was designed …


A Bayesian Approach For Lifetime Modeling And Prediction With Multi-Type Group-Shared Missing Covariates, Hao Zeng, Xuxue Sun, Kuo Wang, Yuxin Wen, Wujun Si, Mingyang Li Feb 2024

A Bayesian Approach For Lifetime Modeling And Prediction With Multi-Type Group-Shared Missing Covariates, Hao Zeng, Xuxue Sun, Kuo Wang, Yuxin Wen, Wujun Si, Mingyang Li

Engineering Faculty Articles and Research

In the field of reliability engineering, covariate information shared among product units within a specific group (e.g., a manufacturing batch, an operating region), such as operating conditions and design settings, exerts substantial influence on product lifetime prediction. The covariates shared within each group may be missing due to sensing limitations and data privacy issues. The missing covariates shared within the same group commonly encompass a variety of attribute types, such as discrete types, continuous types, or mixed types. Existing studies have mainly considered single-type missing covariates at the individual level, and they have failed to thoroughly investigate the influence of …


Piecing Together Performance: Collaborative, Participatory Research-Through-Design For Better Diversity In Games, Daniel L. Gardner, Louanne Boyd, Reginald T. Gardner Jan 2024

Piecing Together Performance: Collaborative, Participatory Research-Through-Design For Better Diversity In Games, Daniel L. Gardner, Louanne Boyd, Reginald T. Gardner

Engineering Faculty Articles and Research

Digital games are a multi-billion-dollar industry whose production and consumption extend globally. Representation in games is an increasingly important topic. As those who create and consume the medium grow ever more diverse, it is essential that player or user-experience research, usability, and any consideration of how people interface with their technology is exercised through inclusive and intersectional lenses. Previous research has identified how character configuration interfaces preface white-male defaults [39, 40, 67]. This study relies on 1-on-1 play-interviews where diverse participants attempt to create “themselves” in a series of games and on group design activities to explore how participants may …


Many-Valued Coalgebraic Logic: From Boolean Algebras To Primal Varieties, Alexander Kurz, Wolfgang Poiger Sep 2023

Many-Valued Coalgebraic Logic: From Boolean Algebras To Primal Varieties, Alexander Kurz, Wolfgang Poiger

Engineering Faculty Articles and Research

We study many-valued coalgebraic logics with primal algebras of truth-degrees. We describe a way to lift algebraic semantics of classical coalgebraic logics, given by an endofunctor on the variety of Boolean algebras, to this many-valued setting, and we show that many important properties of the original logic are inherited by its lifting. Then, we deal with the problem of obtaining a concrete axiomatic presentation of the variety of algebras for this lifted logic, given that we know one for the original one. We solve this problem for a class of presentations which behaves well with respect to a lattice structure …


Multi-Scale Attention Networks For Pavement Defect Detection, Junde Chen, Yuxin Wen, Yaser Ahangari Nanehkaran, Defu Zhang, Adan Zeb Jul 2023

Multi-Scale Attention Networks For Pavement Defect Detection, Junde Chen, Yuxin Wen, Yaser Ahangari Nanehkaran, Defu Zhang, Adan Zeb

Engineering Faculty Articles and Research

Pavement defects such as cracks, net cracks, and pit slots can cause potential traffic safety problems. The timely detection and identification play a key role in reducing the harm of various pavement defects. Particularly, the recent development in deep learning-based CNNs has shown competitive performance in image detection and classification. To detect pavement defects automatically and improve effects, a multi-scale mobile attention-based network, which we termed MANet, is proposed to perform the detection of pavement defects. The architecture of the encoder-decoder is used in MANet, where the encoder adopts the MobileNet as the backbone network to extract pavement defect features. …


Adaptive Plasmonic Metasurfaces For Radiative Cooling And Passive Thermoregulation, Azadeh Didari-Bader, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri Jun 2023

Adaptive Plasmonic Metasurfaces For Radiative Cooling And Passive Thermoregulation, Azadeh Didari-Bader, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri

Engineering Faculty Articles and Research

In this work, we investigate a class of planar photonic structures operating as passive thermoregulators. The radiative cooling process is adjusted through the incorporation of a phase change material (Vanadium Dioxide, VO2) in conjunction with a layer of transparent conductive oxide (Aluminum-doped Zinc Oxide, AZO). VO2 is known to undergo a phase transition from the “dielectric” phase to the “plasmonic” or “metallic” phase at a critical temperature close to 68°C. In addition, AZO shows plasmonic properties at the long-wave infrared spectrum, which, combined with VO2, provides a rich platform to achieve low reflections across the …


Counterventions: A Reparative Reflection On Interventionist Hci, Rua Mae Williams, Louanne E. Boyd, Juan E. Gilbert Apr 2023

Counterventions: A Reparative Reflection On Interventionist Hci, Rua Mae Williams, Louanne E. Boyd, Juan E. Gilbert

Engineering Faculty Articles and Research

Research in HCI applied to clinical interventions relies on normative assumptions about which bodies and minds are healthy, valuable, and desirable. To disrupt this normalizing drive in HCI, we define a “counterventional approach” to intervention technology design informed by critical scholarship and community perspectives. This approach is meant to unsettle normative assumptions of intervention as urgent, necessary, and curative. We begin with a historical overview of intervention in HCI and its critics. Then, through reparative readings of past HCI projects in autism intervention, we illustrate the emergent principles of a counterventional approach and how it may manifest research outcomes that …


Para Cima Y Pa’ Abajo: Building Bridges Between Hci Research In Latin America And In The Global North, Pedro Reynolds-Cuéllar, Marisol Wong-Villacres, Karla A. Badillo-Urquiola, Mayra Donaji Barrera-Machuca, Franceli L. Cibrian, Marianela Ciolfi Felice, Carolina Fuentes, Laura Sanely Gaytán-Lugo, Vivian Genaro Motti, Monica Perusquía-Hernández, Oscar A. Lemus Apr 2023

Para Cima Y Pa’ Abajo: Building Bridges Between Hci Research In Latin America And In The Global North, Pedro Reynolds-Cuéllar, Marisol Wong-Villacres, Karla A. Badillo-Urquiola, Mayra Donaji Barrera-Machuca, Franceli L. Cibrian, Marianela Ciolfi Felice, Carolina Fuentes, Laura Sanely Gaytán-Lugo, Vivian Genaro Motti, Monica Perusquía-Hernández, Oscar A. Lemus

Engineering Faculty Articles and Research

The Human-computer Interaction (HCI) community has the opportunity to foster the integration of research practices across the Global South and North to begin overcoming colonial relationships. In this paper, we focus on the case of Latin America (LATAM), where initiatives to increase the representation of HCI practitioners lack a consolidated understanding of the practices they employ, the factors that influence them, and the challenges that practitioners face. To address this knowledge gap, we employ a mixed-methods approach, comprising a survey (66 respondents) and in-depth interviews (19 interviewees). Our analyses characterize a set of research perspectives on how HCI is practiced …


Utilizing Inverse Design To Create Plasmonic Waveguide Devices, Michael Efseaff, Kyle Wynne, Mark C. Harrison Mar 2023

Utilizing Inverse Design To Create Plasmonic Waveguide Devices, Michael Efseaff, Kyle Wynne, Mark C. Harrison

Engineering Faculty Articles and Research

In modern communications networks, data is transmitted over long distances using optical fibers. At nodes in the network, the data is converted to an electrical signal to be processed, and then converted back into an optical signal to be sent over fiber optics. This process results in higher power consumption and adds to transmission time. However, by processing the data optically, we can begin to alleviate these issues and surpass systems which rely on electronics. One promising approach for this is plasmonic devices. Plasmonic waveguide devices have smaller footprints than silicon photonics for more compact photonic integrated circuits, although they …


Large-Scale Identification And Analysis Of Factors Impacting Simple Bug Resolution Times In Open Source Software Repositories, Elia Eiroa-Lledo, Rao Hamza Ali, Gabriela Pinto, Jillian Anderson, Erik Linstead Feb 2023

Large-Scale Identification And Analysis Of Factors Impacting Simple Bug Resolution Times In Open Source Software Repositories, Elia Eiroa-Lledo, Rao Hamza Ali, Gabriela Pinto, Jillian Anderson, Erik Linstead

Engineering Faculty Articles and Research

One of the most prominent issues the ever-growing open-source software community faces is the abundance of buggy code. Well-established version control systems and repository hosting services such as GitHub and Maven provide a checks-and-balances structure to minimize the amount of buggy code introduced. Although these platforms are effective in mitigating the problem, it still remains. To further the efforts toward a more effective and quicker response to bugs, we must understand the factors that affect the time it takes to fix one. We apply a custom traversal algorithm to commits made for open source repositories to determine when “simple stupid …


Completeness Of Nominal Props, Samuel Balco, Alexander Kurz Jan 2023

Completeness Of Nominal Props, Samuel Balco, Alexander Kurz

Engineering Faculty Articles and Research

We introduce nominal string diagrams as string diagrams internal in the category of nominal sets. This leads us to define nominal PROPs and nominal monoidal theories. We show that the categories of ordinary PROPs and nominal PROPs are equivalent. This equivalence is then extended to symmetric monoidal theories and nominal monoidal theories, which allows us to transfer completeness results between ordinary and nominal calculi for string diagrams.


Towards Qos-Based Embedded Machine Learning, Tom Springer, Erik Linstead, Peiyi Zhao, Chelsea Parlett-Pelleriti Oct 2022

Towards Qos-Based Embedded Machine Learning, Tom Springer, Erik Linstead, Peiyi Zhao, Chelsea Parlett-Pelleriti

Engineering Faculty Articles and Research

Due to various breakthroughs and advancements in machine learning and computer architectures, machine learning models are beginning to proliferate through embedded platforms. Some of these machine learning models cover a range of applications including computer vision, speech recognition, healthcare efficiency, industrial IoT, robotics and many more. However, there is a critical limitation in implementing ML algorithms efficiently on embedded platforms: the computational and memory expense of many machine learning models can make them unsuitable in resource-constrained environments. Therefore, to efficiently implement these memory-intensive and computationally expensive algorithms in an embedded computing environment, innovative resource management techniques are required at the …


A Large-Scale Sentiment Analysis Of Tweets Pertaining To The 2020 Us Presidential Election, Rao Hamza Ali, Gabriela Pinto, Evelyn Lawrie, Erik J. Linstead Jun 2022

A Large-Scale Sentiment Analysis Of Tweets Pertaining To The 2020 Us Presidential Election, Rao Hamza Ali, Gabriela Pinto, Evelyn Lawrie, Erik J. Linstead

Engineering Faculty Articles and Research

We capture the public sentiment towards candidates in the 2020 US Presidential Elections, by analyzing 7.6 million tweets sent out between October 31st and November 9th, 2020. We apply a novel approach to first identify tweets and user accounts in our database that were later deleted or suspended from Twitter. This approach allows us to observe the sentiment held for each presidential candidate across various groups of users and tweets: accessible tweets and accounts, deleted tweets and accounts, and suspended or inaccessible tweets and accounts. We compare the sentiment scores calculated for these groups and provide key insights into the …


Machine Learning Based Medical Image Deepfake Detection: A Comparative Study, Siddharth Solaiyappan, Yuxin Wen Apr 2022

Machine Learning Based Medical Image Deepfake Detection: A Comparative Study, Siddharth Solaiyappan, Yuxin Wen

Engineering Faculty Articles and Research

Deep generative networks in recent years have reinforced the need for caution while consuming various modalities of digital information. One avenue of deepfake creation is aligned with injection and removal of tumors from medical scans. Failure to detect medical deepfakes can lead to large setbacks on hospital resources or even loss of life. This paper attempts to address the detection of such attacks with a structured case study. Specifically, we evaluate eight different machine learning algorithms, which include three conventional machine learning methods (Support Vector Machine, Random Forest, Decision Tree) and five deep learning models (DenseNet121, DenseNet201, ResNet50, ResNet101, VGG19) …


A Deep Learning-Based Approach To Extraction Of Filler Morphology In Sem Images With The Application Of Automated Quality Inspection, Md. Fashiar Rahman, Tzu-Liang Bill Tseng, Jianguo Wu, Yuxin Wen, Yirong Lin Mar 2022

A Deep Learning-Based Approach To Extraction Of Filler Morphology In Sem Images With The Application Of Automated Quality Inspection, Md. Fashiar Rahman, Tzu-Liang Bill Tseng, Jianguo Wu, Yuxin Wen, Yirong Lin

Engineering Faculty Articles and Research

Automatic extraction of filler morphology (size, orientation, and spatial distribution) in Scanning Electron Microscopic (SEM) images is essential in many applications such as automatic quality inspection in composite manufacturing. Extraction of filler morphology greatly depends on accurate segmentation of fillers (fibers and particles), which is a challenging task due to the overlap of fibers and particles and their obscure presence in SEM images. Convolution Neural Networks (CNNs) have been shown to be very effective at object recognition in digital images. This paper proposes an automatic filler detection system in SEM images, utilizing a Mask Region-based CNN architecture. The proposed system …


Three Wave Mixing In Epsilon-Near-Zero Plasmonic Waveguides For Signal Regeneration, Nicholas Mirchandani, Mark C. Harrison Mar 2022

Three Wave Mixing In Epsilon-Near-Zero Plasmonic Waveguides For Signal Regeneration, Nicholas Mirchandani, Mark C. Harrison

Engineering Faculty Articles and Research

Vast improvements in communications technology are possible if the conversion of digital information from optical to electric and back can be removed. Plasmonic devices offer one solution due to optical computing’s potential for increased bandwidth, which would enable increased throughput and enhanced security. Plasmonic devices have small footprints and interface with electronics easily, but these potential improvements are offset by the large device footprints of conventional signal regeneration schemes, since surface plasmon polaritons (SPPs) are incredibly lossy. As such, there is a need for novel regeneration schemes. The continuous, uniform, and unambiguous digital information encoding method is phase-shift-keying (PSK), so …


Applications Of Unsupervised Machine Learning In Autism Spectrum Disorder Research: A Review, Chelsea Parlett-Pelleriti, Elizabeth Stevens, Dennis R. Dixon, Erik J. Linstead Jan 2022

Applications Of Unsupervised Machine Learning In Autism Spectrum Disorder Research: A Review, Chelsea Parlett-Pelleriti, Elizabeth Stevens, Dennis R. Dixon, Erik J. Linstead

Engineering Faculty Articles and Research

Large amounts of autism spectrum disorder (ASD) data is created through hospitals, therapy centers, and mobile applications; however, much of this rich data does not have pre-existing classes or labels. Large amounts of data—both genetic and behavioral—that are collected as part of scientific studies or a part of treatment can provide a deeper, more nuanced insight into both diagnosis and treatment of ASD. This paper reviews 43 papers using unsupervised machine learning in ASD, including k-means clustering, hierarchical clustering, model-based clustering, and self-organizing maps. The aim of this review is to provide a survey of the current uses of …


Feel And Touch: A Haptic Mobile Game To Assess Tactile Processing, Ivonne Monarca, Monica Tentori, Franceli L. Cibrian Nov 2021

Feel And Touch: A Haptic Mobile Game To Assess Tactile Processing, Ivonne Monarca, Monica Tentori, Franceli L. Cibrian

Engineering Faculty Articles and Research

Haptic interfaces have great potential for assessing the tactile processing of children with Autism Spectrum Disorder (ASD), an area that has been under-explored due to the lack of tools to assess it. Until now, haptic interfaces for children have mostly been used as a teaching or therapeutic tool, so there are still open questions about how they could be used to assess tactile processing of children with ASD. This article presents the design process that led to the development of Feel and Touch, a mobile game augmented with vibrotactile stimuli to assess tactile processing. Our feasibility evaluation, with 5 children …


Let's Read: Designing A Smart Display Application To Support Codas When Learning Spoken Language, Katie Rodeghiero, Yingying Yuki Chen, Annika M. Hettmann, Franceli L. Cibrian Nov 2021

Let's Read: Designing A Smart Display Application To Support Codas When Learning Spoken Language, Katie Rodeghiero, Yingying Yuki Chen, Annika M. Hettmann, Franceli L. Cibrian

Engineering Faculty Articles and Research

Hearing children of Deaf adults (CODAs) face many challenges including having difficulty learning spoken languages, experiencing social judgment, and encountering greater responsibilities at home. In this paper, we present a proposal for a smart display application called Let's Read that aims to support CODAs when learning spoken language. We conducted a qualitative analysis using online community content in English to develop the first version of the prototype. Then, we conducted a heuristic evaluation to improve the proposed prototype. As future work, we plan to use this prototype to conduct participatory design sessions with Deaf adults and CODAs to evaluate the …


Hierarchical Scheduling For Real-Time Periodic Tasks In Symmetric Multiprocessing, Tom Springer, Peiyi Zhao Jun 2021

Hierarchical Scheduling For Real-Time Periodic Tasks In Symmetric Multiprocessing, Tom Springer, Peiyi Zhao

Engineering Faculty Articles and Research

In this paper, we present a new hierarchical scheduling framework for periodic tasks in symmetric multiprocessor (SMP) platforms. Partitioned and global scheduling are the two main approaches used by SMP based systems where global scheduling is recommended for overall performance and partitioned scheduling is recommended for hard real-time performance. Our approach combines both the global and partitioned approaches of traditional SMP-based schedulers to provide hard real-time performance guarantees for critical tasks and improved response times for soft real-time tasks. Implemented as part of VxWorks, the results are confirmed using a real-time benchmark application, where response times were improved for soft …


On-Device Deep Learning Inference For System-On-Chip (Soc) Architectures, Tom Springer, Elia Eiroa-Lledo, Elizabeth Stevens, Erik Linstead Mar 2021

On-Device Deep Learning Inference For System-On-Chip (Soc) Architectures, Tom Springer, Elia Eiroa-Lledo, Elizabeth Stevens, Erik Linstead

Engineering Faculty Articles and Research

As machine learning becomes ubiquitous, the need to deploy models on real-time, embedded systems will become increasingly critical. This is especially true for deep learning solutions, whose large models pose interesting challenges for target architectures at the “edge” that are resource-constrained. The realization of machine learning, and deep learning, is being driven by the availability of specialized hardware, such as system-on-chip solutions, which provide some alleviation of constraints. Equally important, however, are the operating systems that run on this hardware, and specifically the ability to leverage commercial real-time operating systems which, unlike general purpose operating systems such as Linux, can …


Implementing Inverse Design Tools For Plasmonic Digital Logic Devices, Krishna Narayan, Mark C. Harrison Mar 2021

Implementing Inverse Design Tools For Plasmonic Digital Logic Devices, Krishna Narayan, Mark C. Harrison

Engineering Faculty Articles and Research

Despite the benefits that optics and photonics have brought to improving communications, there remains a lack of commercialized optical computing devices and systems, which reduces the benefits of using light as an information-carrying medium. We are developing architectures and designs of photonic logic gates for creating larger-scale functional photonic logic circuits. In contrast to other approaches, we are focusing on the development of logic devices which can be cascaded in arbitrary ways to allow for more complex photonic integrated circuit design. Additionally, optical computing often uses on-off keying, which fails to take advantage of denser encoding schemes often used to …


Exploring The Eating Disorder Examination Questionnaire, Clinical Impairment Assessment, And Autism Quotient To Identify Eating Disorder Vulnerability: A Cluster Analysis, Natalia Stewart Rosenfield, Erik Linstead Sep 2020

Exploring The Eating Disorder Examination Questionnaire, Clinical Impairment Assessment, And Autism Quotient To Identify Eating Disorder Vulnerability: A Cluster Analysis, Natalia Stewart Rosenfield, Erik Linstead

Engineering Faculty Articles and Research

Eating disorders are very complicated and many factors play a role in their manifestation. Furthermore, due to the variability in diagnosis and symptoms, treatment for an eating disorder is unique to the individual. As a result, there are numerous assessment tools available, which range from brief survey questionnaires to in-depth interviews conducted by a professional. One of the many benefits to using machine learning is that it offers new insight into datasets that researchers may not previously have, particularly when compared to traditional statistical methods. The aim of this paper was to employ k-means clustering to explore the Eating Disorder …


A Fortran-Keras Deep Learning Bridge For Scientific Computing, Jordan Ott, Mike Pritchard, Natalie Best, Erik Linstead, Milan Curcic, Pierre Baldi Aug 2020

A Fortran-Keras Deep Learning Bridge For Scientific Computing, Jordan Ott, Mike Pritchard, Natalie Best, Erik Linstead, Milan Curcic, Pierre Baldi

Engineering Faculty Articles and Research

Implementing artificial neural networks is commonly achieved via high-level programming languages such as Python and easy-to-use deep learning libraries such as Keras. These software libraries come preloaded with a variety of network architectures, provide autodifferentiation, and support GPUs for fast and efficient computation. As a result, a deep learning practitioner will favor training a neural network model in Python, where these tools are readily available. However, many large-scale scientific computation projects are written in Fortran, making it difficult to integrate with modern deep learning methods. To alleviate this problem, we introduce a software library, the Fortran-Keras Bridge (FKB). This two-way …


Highly Swelling Ph-Responsive Microgels For Dual Mode Near Infra-Red Fluorescence Reporting And Imaging, Mingning Zhu, Dongdong Lu, Qing Lian, Shanglin Wu, Wenkai Wang, L. Andrew Lyon, Weiguang Wan, Paulo Bártolo, Mark Dickinson, Brian R. Saunders Aug 2020

Highly Swelling Ph-Responsive Microgels For Dual Mode Near Infra-Red Fluorescence Reporting And Imaging, Mingning Zhu, Dongdong Lu, Qing Lian, Shanglin Wu, Wenkai Wang, L. Andrew Lyon, Weiguang Wan, Paulo Bártolo, Mark Dickinson, Brian R. Saunders

Engineering Faculty Articles and Research

Near infra-red (NIR) fluorescence is a desirable property for probe particles because such deeply penetrating light enables remote reporting of the local environment in complex surroundings and imaging. Here, two NIR non-radiative energy transfer (NRET) fluorophores (Cy5 and Cy5.5) are coupled to preformed pH-responsive poly(ethylacrylate-methacrylic acid-divinylbenzene) microgel particles (PEA-MAA-5/5.5 MGs) to obtain new NIR fluorescent probes that are cytocompatible and swell strongly. NIR ratiometric photoluminescence (PL) intensity analysis enables reporting of pH-triggered PEA-MAA-5/5.5 MG particle swelling ratios over a very wide range (from 1–90). The dispersions have greatly improved colloidal stability compared to a reference temperature-responsive NIR MG based on …


Exploring The Efficacy Of Transfer Learning In Mining Image‑Based Software Artifacts, Natalie Best, Jordan Ott, Erik J. Linstead Aug 2020

Exploring The Efficacy Of Transfer Learning In Mining Image‑Based Software Artifacts, Natalie Best, Jordan Ott, Erik J. Linstead

Engineering Faculty Articles and Research

Background

Transfer learning allows us to train deep architectures requiring a large number of learned parameters, even if the amount of available data is limited, by leveraging existing models previously trained for another task. In previous attempts to classify image-based software artifacts in the absence of big data, it was noted that standard off-the-shelf deep architectures such as VGG could not be utilized due to their large parameter space and therefore had to be replaced by customized architectures with fewer layers. This proves to be challenging to empirical software engineers who would like to make use of existing architectures without …


A Machine Learning Approach To Delineating Neighborhoods From Geocoded Appraisal Data, Rao Hamza Ali, Josh Graves, Stanley Wu, Jenny Lee, Erik Linstead Jul 2020

A Machine Learning Approach To Delineating Neighborhoods From Geocoded Appraisal Data, Rao Hamza Ali, Josh Graves, Stanley Wu, Jenny Lee, Erik Linstead

Engineering Faculty Articles and Research

Identification of neighborhoods is an important, financially-driven topic in real estate. It is known that the real estate industry uses ZIP (postal) codes and Census tracts as a source of land demarcation to categorize properties with respect to their price. These demarcated boundaries are static and are inflexible to the shift in the real estate market and fail to represent its dynamics, such as in the case of an up-and-coming residential project. Delineated neighborhoods are also used in socioeconomic and demographic analyses where statistics are computed at a neighborhood level. Current practices of delineating neighborhoods have mostly ignored the information …


Ml-Medic: A Preliminary Study Of An Interactive Visual Analysis Tool Facilitating Clinical Applications Of Machine Learning For Precision Medicine, Laura Stevens, David Kao, Jennifer Hall, Carsten Görg, Kaitlyn Abdo, Erik Linstead May 2020

Ml-Medic: A Preliminary Study Of An Interactive Visual Analysis Tool Facilitating Clinical Applications Of Machine Learning For Precision Medicine, Laura Stevens, David Kao, Jennifer Hall, Carsten Görg, Kaitlyn Abdo, Erik Linstead

Engineering Faculty Articles and Research

Accessible interactive tools that integrate machine learning methods with clinical research and reduce the programming experience required are needed to move science forward. Here, we present Machine Learning for Medical Exploration and Data-Inspired Care (ML-MEDIC), a point-and-click, interactive tool with a visual interface for facilitating machine learning and statistical analyses in clinical research. We deployed ML-MEDIC in the American Heart Association (AHA) Precision Medicine Platform to provide secure internet access and facilitate collaboration. ML-MEDIC’s efficacy for facilitating the adoption of machine learning was evaluated through two case studies in collaboration with clinical domain experts. A domain expert review was also …