Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Heavy Metal Concentrations In Water And Surface Sediments Of Wilgreen Lake, Madison County, Kentucky, Chad Von Gruenigen, Walter S. Borowski Dec 2010

Heavy Metal Concentrations In Water And Surface Sediments Of Wilgreen Lake, Madison County, Kentucky, Chad Von Gruenigen, Walter S. Borowski

EKU Faculty and Staff Scholarship

Heavy metal pollution remains problematic in natural waters, particularly for localities near plausible anthropogenic sources. We assayed the level of heavy metals in surface waters and within surface sediments of Wilgreen Lake, whose watershed drains industrial, urban, agricultural, and residential areas near Richmond, Kentucky. Water samples were treated according to Environmental Protection Agency (EPA) protocols and digested with trace-metal-grade nitric and hydrochloric acids. Sediment samples were collected with a grab sampler and digested using established EPA procedures with hydrogen peroxide and trace-metal-grade nitric acid. Both water samples and sediment samples were sent to Activation Laboratories for analysis, and were measured …


Patterns Of Heavy Metal Concentration In Core Sediments, Wilgreen Lake, Madison County, Kentucky, Clint Mcmaine, Walter S. Borowski Nov 2010

Patterns Of Heavy Metal Concentration In Core Sediments, Wilgreen Lake, Madison County, Kentucky, Clint Mcmaine, Walter S. Borowski

EKU Faculty and Staff Scholarship

Elevated levels of cadmium, copper, lead, and nickel were found within the waters of Wilgreen Lake during a preliminary survey in 2007. Accumulation of heavy metals in freshwater systems is a known problem. Heavy metals enter the lake in the dissolved phase or adsorbed onto sediment particles and may be linked to industries within the lake’s watershed. Under certain geochemical conditions such as anoxia, heavy metals may detach from sediment particles and diffuse into overlying lake waters, causing a renewed influx of heavy metals into the ecosystem. We hypothesize that heavy metals should decrease in concentration upcore as a result …


Heavy Metal Concentrations In Water And Surface Sediments Of Wilgreen Lake, Madison County, Kentucky, Chad Von Gruenigen, Walter S. Borowski Nov 2010

Heavy Metal Concentrations In Water And Surface Sediments Of Wilgreen Lake, Madison County, Kentucky, Chad Von Gruenigen, Walter S. Borowski

EKU Faculty and Staff Scholarship

Heavy metal pollution remains a problem in natural waters, particularly for localities near plausible anthropogenic sources. We assayed the level of heavy metals in surface waters and within surface sediments of Wilgreen Lake, whose watershed drains industrial, urban, and residential areas near Richmond, Kentucky.

Water samples were treated according to Environmental Protection Agency (EPA) protocols and digested with trace-metal-grade nitric and hydrochloric acids. Sediment samples were collected with a grab sampler and digested using established EPA procedures with hydrogen peroxide and trace-metal-grade nitric acid. Both water samples and sediment samples were sent to Activation Laboratories for analysis, and were measured …


Enrichments Of Heavy Sulfur (34s) In Sulfide Minerals: Gas Hydrates, Methane Delivery, And Anaerobic Methane Oxidation, Walter S. Borowski, Namcy M. Rodriguez, Charles K. Paull, William Ussler Iii Jun 2010

Enrichments Of Heavy Sulfur (34s) In Sulfide Minerals: Gas Hydrates, Methane Delivery, And Anaerobic Methane Oxidation, Walter S. Borowski, Namcy M. Rodriguez, Charles K. Paull, William Ussler Iii

EKU Faculty and Staff Scholarship

The sulfur isotopic composition of authigenic, sedimentary sulfide minerals is largely controlled by sulfate reduction and related processes within sedimentary environments. Histograms show that that d34S values of sulfide minerals forming in depositional and diagenetic environments are most often negative (d34S < 0o/oo CDT) reflecting the original isotopic composition of seawater sulfate (now ~21o/oo), microbially-mediated fractionations of ~-8 to -40o/oo (a = 1.029-1.059) during sulfate reduction, and more extreme fractionations caused by sulfur disproportionation. Enrichments of heavy sulfur (d34S > 0o/oo) in sulfide …


Changing Depositional Environments In An Upper Ordovician Stratigraphic Sequence, Ashlock Formation, Madison County, Kentucky, Kevin G. Greff, Walter S. Borowski Apr 2010

Changing Depositional Environments In An Upper Ordovician Stratigraphic Sequence, Ashlock Formation, Madison County, Kentucky, Kevin G. Greff, Walter S. Borowski

EKU Faculty and Staff Scholarship

We investigate the sedimentology, stratigraphy, and depositional environments of a 7-meter, Upper Ordovician limestone sequence cropping out in Richmond, Madison County, Kentucky. The stratigraphic section lies within the Ashlock Formation with good lateral exposure stretching along 200 meters of a highway roadcut. We took approximately 20 samples from the measured section, focusing on representative samples and lithologic transitions. We use standard laboratory procedures in slabbing rock samples and making thin sections.

The Ashlock Formation here consists of alternating layers of limey mudstone and limestone (field units A through F). Megafossils - brachiopods, bryozoans, trilobites, gastropods, ostracodes, coralline algae, and bivalves …