Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Binding Interactions Of Biologically Relevant Molecules Studied Using Surface-Modified And Nanostructured Surfaces, Palak Sondhi Nov 2023

Binding Interactions Of Biologically Relevant Molecules Studied Using Surface-Modified And Nanostructured Surfaces, Palak Sondhi

Dissertations

This research focuses on the field of surface nanobioscience, wherein different nanosurfaces that will be used as working electrodes in the electrochemical cell are manufactured and surface modified to understand the critical binding interactions between biologically significant molecules like proteins, carbohydrates, small drug molecules, and glycoproteins. This research is essential if we are to determine whether a synthetic molecule can serve as a therapeutic candidate or diagnose a disease in its early stages. In order to fully understand the binding interactions, the study begins with defining some of the fundamental concepts, principles, and analytical tools for biosensing.

Afterwards, we addressed …


Mechanism Of Sila- And Germafluorenes For Biological Applications, Shelby Jarrett Jun 2022

Mechanism Of Sila- And Germafluorenes For Biological Applications, Shelby Jarrett

Dissertations

2,7-disubstituted silafluorenes and germafluorenes, originally designed for OLED applications, are a class of fluorescent dyes that have gained recent interest as probes for bioimaging and as biosensors to monitor cellular dynamics and interactions. Desirable biological probes absorb in the visible region, have high extinction coefficients, high quantum yield and excellent photostability. Here, their spectral properties are investigated under aqueous conditions for relevant biological applications. These molecules display intense blue fluorescence in the solid state and in solution, have high extinction coefficients, and exhibit appreciable solubility in aqueous solution. To better understand potential applications, the mechanism of fluorescence was investigated. It …


Smart Sensors With Dual Modes Of Signal Transduction For Monitoring Molecules Pertinent To Health And The Environment, Jared T. Wabeke Dec 2019

Smart Sensors With Dual Modes Of Signal Transduction For Monitoring Molecules Pertinent To Health And The Environment, Jared T. Wabeke

Dissertations

The dissertation focuses on the design and synthesis of smart materials for the detection of molecules pertinent to environmental protection and healthcare. The use of computational simulations is pivotal toward advancing molecular design for targeted applications. Research was conducted to investigate the use of simulations to develop novel sensors with dual modes of signal transduction. The molecular properties were determined using computational modelling, and then used to elucidate the binding mechanism of the corresponding sensor complexes. Several molecules were produced that respond to important organic analytes, such as glucose and fenthion, an organophosphorus pesticide. Glucose is an exceedingly important biological …


Fluorescent Probes And Functionalized Nanoparticles For Bioimaging: Synthesis, Photophysical Properties And Applications, Xinglei Liu May 2018

Fluorescent Probes And Functionalized Nanoparticles For Bioimaging: Synthesis, Photophysical Properties And Applications, Xinglei Liu

Dissertations

The development of new organic molecular probes with excellent photophysical properties and high fluorescence quantum yields is of considerable interest to many research areas including one- and two-photon fluorescence microscopy, fluorescence-based sensing methodologies, and cancer therapy. Series of organic linear-/non-linear optical molecules including squaraine derivatives, and fluorene derivatives as well as other bioconjugates are designed and synthesized during the doctoral study for the aim of ion detection (Chapter 5), photo dynamic therapy, and deep-tissue imaging (Chapter 4). These optical probes are capable of absorbing light in the near infrared (NIR) window and thus have deeper penetration and cause less photodamage …


Molecular Probes For The Detection Of Zn2+ And Fe3+ Ions, Erendra Manandhar Dec 2014

Molecular Probes For The Detection Of Zn2+ And Fe3+ Ions, Erendra Manandhar

Dissertations

A number of molecular probes have been designed and synthesized for the detection of Zn2+ and Fe3+ ions. Two types of functional groups have been incorporated into the molecular scaffolds to utilize different fluorescent mechanisms. The first class of receptors contains a pyrene moiety. These molecular probes use the excimer mechanism for the detection of Zn2+ ion. The probes work well in an organic solvent with a detection limit of 20 nM (one ppb). Alternatives are made to make them water soluble, but this proved to be difficult. An interesting ion-induced self-assembly system will also be discussed. …


Synthesis And Characterization Of New Light Emitting Probes For Sensitive Detection Of Bio-Molecules And Live Cells, Shyamala Pravin Pillai Jan 2013

Synthesis And Characterization Of New Light Emitting Probes For Sensitive Detection Of Bio-Molecules And Live Cells, Shyamala Pravin Pillai

Dissertations

A variety of contemporary analytical platforms in technical and biological applications take advantage of labeling the objects of interest with fluorescent or luminescent tracers. Luminescent tracers take advantage of the unique property of some lanthanide metals to absorb and emit light. Long lifetime of lanthanide emission allows temporal gating of the signal, which avoids the short-lived background of interfering sample components. This property in combination with large Stokes shift contributes to extreme sensitivity of detection (ca. 10-13-10-14 M), which makes lanthanide-based probes suitable for large variety of challenging tasks ( e.g., intracellular detection of single DNA/RNA, or …


Understanding Corrosion Protection And Failure Through Model Polymers In Thin Films, Joshua Smith Hanna Dec 2012

Understanding Corrosion Protection And Failure Through Model Polymers In Thin Films, Joshua Smith Hanna

Dissertations

When developing a model polymeric system to facilitate in the detection of molecular and microscopic events that preface macroscopic corrosive failure; a better understanding of how polymers can indicate corrosion was accomplished. Initially, the thought that molecular chain scission as a necessity for corrosion to occur had to be tested. Through the utilization of high molecular weight thermoplastic (HMWTP) model polymers, it was found that corrosion protection did not correlate to the quantity of weak bonds within an epoxy-amine polymer matrix. Therefore more sensitive methods of detecting corrosion had to be developed since changes within the polymer matrix did not …


Detection Of Vapor Phase Mercury Species By Laser Fluorescence Methods, Xiaomei Tong Aug 2001

Detection Of Vapor Phase Mercury Species By Laser Fluorescence Methods, Xiaomei Tong

Dissertations

Elemental and compound mercury are often both volatile and air stable. Several mercury species emissions have been identified in off-gases from industrial processes. The high toxicity of mercury species and the presence of mercury species in municipal waste and coal have prompted a demand for a cost-effective, accurate, and rugged technique for real-time, continuous detection of mercury species vapors. Real-time, continuous emission measurements are important for process control, monitoring, and remediation. At present, there is no commercial continuous emission monitoring (CEM) technique or instrumentation to reliably monitor volatile mercury species emissions from industrial stacks. Conventional measurement methods, such as cold …