Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 26 of 26

Full-Text Articles in Physical Sciences and Mathematics

Control Implemented On Quantum Computers: Effects Of Noise, Nondeterminism, And Entanglement, Kip Nieman, Keshav Kasturi Rangan, Helen Durand Jul 2022

Control Implemented On Quantum Computers: Effects Of Noise, Nondeterminism, And Entanglement, Kip Nieman, Keshav Kasturi Rangan, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

Quantum computing has advanced in recent years to the point that there are now some quantum computers and quantum simulators available to the public for use. In addition, quantum computing is beginning to receive attention within the process systems engineering community for directions such as machine learning and optimization. A logical next step for its evaluation within process systems engineering is for control, specifically for computing control actions to be applied to process systems. In this work, we provide some initial studies regarding the implementation of control on quantum computers, including the implementation of a single-input/single-output proportional control law on …


Actuator Cyberattack Handling Using Lyapunov-Based Economic Model Predictive Control, Keshav Kasturi Rangan, Henrique Oyama, Helen Durand Jun 2022

Actuator Cyberattack Handling Using Lyapunov-Based Economic Model Predictive Control, Keshav Kasturi Rangan, Henrique Oyama, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

Cybersecurity has gained increasing interest as a consequence of the potential impacts of cyberattacks on profits and safety. While attacks can affect various components of a plant, prior work from our group has focused on the impact of cyberattacks on control components such as process sensors and actuators and the development of detection strategies for cybersecurity derived from control theory. In this work, we provide greater focus on actuator attacks; specifically, we extend a detection and control strategy previously applied for sensor attacks and based on an optimization-based control technique called Lyapunov-based economic model predictive control (LEMPC) to detect attacks …


Test Methods For Image-Based Information In Next-Generation Manufacturing, Henrique Oyama, Dominic Messina, Renee O'Neill, Samantha Cherney, Minhazur Rahman, Keshav Kasturi Rangan, Govanni Gjonaj, Helen Durand Jun 2022

Test Methods For Image-Based Information In Next-Generation Manufacturing, Henrique Oyama, Dominic Messina, Renee O'Neill, Samantha Cherney, Minhazur Rahman, Keshav Kasturi Rangan, Govanni Gjonaj, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

Typical control designs in the process systems engineering literature have assumed that the primary sensing methodologies are traditional instruments such as thermocouples. Dig- italization is changing the landscape for manufacturing, and data-based sensing modalities (e.g., image-based sensing) are becoming of greater interest for plant control. These considerations require novel test/evaluation solutions. For example, process systems engineering researchers may wish to test image-based sensors in simulation. In this work, we provide preliminary thoughts on how image-based technologies might be evaluated via simulation for process systems.


Quantum Computing And Resilient Design Perspectives For Cybersecurity Of Feedback Systems, Keshav Kasturi Rangan, Jihan Abou Halloun, Henrique Oyama, Samantha Cherney, Ilham Azali Assoumani, Nazir Jairazbhoy, Helen Durand, Simon Ka Ng Jun 2022

Quantum Computing And Resilient Design Perspectives For Cybersecurity Of Feedback Systems, Keshav Kasturi Rangan, Jihan Abou Halloun, Henrique Oyama, Samantha Cherney, Ilham Azali Assoumani, Nazir Jairazbhoy, Helen Durand, Simon Ka Ng

Chemical Engineering and Materials Science Faculty Research Publications

Cybersecurity of control systems is an important issue in next-generation manufac- turing that can impact both operational objectives (safety and performance) as well as process designs (via hazard analysis). Cyberattacks differ from faults in that they can be coordinated efforts to exploit system vulnerabilities to create otherwise unlikely hazard scenarios. Because coordination and targeted process manipulation can be characteristics of attacks, some of the tactics previously analyzed in our group from a control system cybersecurity perspective have incorporated randomness to attempt to thwart attacks. The underlying assumption for the generation of this randomness has been that it can be achieved …


Challenges And Opportunities For Next-Generation Manufacturing In Space, Kip Nieman, A. F. Leonard, Katie Tyrell, Dominic Messina, Rebecca Lopez, Helen Durand Jun 2022

Challenges And Opportunities For Next-Generation Manufacturing In Space, Kip Nieman, A. F. Leonard, Katie Tyrell, Dominic Messina, Rebecca Lopez, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

With commercial space travel now a reality, the idea that people might spend time on other planets in the future seems to have greater potential. To make this possible, however, there needs to be flexible means for manufacturing in space to enable tooling or resources to be created when needed to handle unexpected situations. Next-generation manufacturing paradigms offer significant potential for the kind of flexibility that might be needed; however, they can result in increases in computation time compared to traditional control methods that could make many of the computing resources already available on earth attractive for use. Furthermore, resilience …


On-Line Process Physics Tests Via Lyapunov-Based Economic Model Predictive Control And Simulation-Based Testing Of Image-Based Process Control, Henrique Oyama, A. F. Leonard, Minhazur Rahman, Govanni Gjonaj, Michael Williamson, Helen Durand Jun 2022

On-Line Process Physics Tests Via Lyapunov-Based Economic Model Predictive Control And Simulation-Based Testing Of Image-Based Process Control, Henrique Oyama, A. F. Leonard, Minhazur Rahman, Govanni Gjonaj, Michael Williamson, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

Next-generation manufacturing involves increasing use of automation and data to enhance process efficiency. An important question for the chemical process industries, as new process systems (e.g., intensified processes) and new data modalities (e.g., images) are integrated with traditional plant automation concepts, will be how to best evaluate alternative strategies for data-driven modeling and synthesizing process data. Two methods which could be used to aid in this are those which aid in testing data-based techniques on-line, and those which enable various data-based techniques to be assessed in simulation. In this work, we discuss two techniques in this domain which can be …


Lyapunov-Based Economic Model Predictive Control For Detecting And Handling Actuator And Simultaneous Sensor/Actuator Cyberattacks On Process Control Systems, Henrique Oyama, Dominic Messina, Keshav Kasturi Rangan, Helen Durand Apr 2022

Lyapunov-Based Economic Model Predictive Control For Detecting And Handling Actuator And Simultaneous Sensor/Actuator Cyberattacks On Process Control Systems, Henrique Oyama, Dominic Messina, Keshav Kasturi Rangan, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

The controllers for a cyber-physical system may be impacted by sensor measurement cyberattacks, actuator signal cyberattacks, or both types of attacks. Prior work in our group has developed a theory for handling cyberattacks on process sensors. However, sensor and actuator cyberattacks have a different character from one another. Specifically, sensor measurement attacks prevent proper inputs from being applied to the process by manipulating the measurements that the controller receives, so that the control law plays a role in the impact of a given sensor measurement cyberattack on a process. In contrast, actuator signal attacks prevent proper inputs from being applied …


Optical Signal Processing With Discrete-Space Metamaterials, Mohammad Moein Moeini Jan 2022

Optical Signal Processing With Discrete-Space Metamaterials, Mohammad Moein Moeini

Wayne State University Dissertations

As digital circuits are approaching the limits of Moore’s law, a great deal of efforthas been directed to alternative computing approaches. Among them, the old concept of optical signal processing (OSP) has attracted attention, revisited in the light of metamaterials and nano-photonics. This approach has been successful in realizing basic mathematical operations, such as derivatives and integrals, but it is difficult to be applied to more complex ones. Inspired by digital filters, we propose a radically new OSP approach, able to realize arbitrary mathematical operations over a nano-photonic platform. We demonstrate this concept for the case of spatial differentiation, image …


Integrated Cyberattack Detection And Handling For Nonlinear Systems With Evolving Process Dynamics Under Lyapunov-Based Economic Model Predictive Control, Keshav Kasturi Rangan, Henrique Oyama, Helen Durand Mar 2021

Integrated Cyberattack Detection And Handling For Nonlinear Systems With Evolving Process Dynamics Under Lyapunov-Based Economic Model Predictive Control, Keshav Kasturi Rangan, Henrique Oyama, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

Safety-critical processes are becoming increasingly automated and connected. While automation can increase effciency, it brings new challenges associated with guaranteeing safety in the presence of uncertainty especially in the presence of control system cyberattacks. One of the challenges for developing control strategies with guaranteed safety and cybersecurity properties under suffcient conditions is the development of appropriate detection strategies that work with control laws to prevent undetected attacks that have immediate closed-loop stability consequences. Achieving this, in the presence of uncertainty brought about by plant/model mismatch and process dynamics that can change with time, requires a fundamental understanding of the characteristics …


High Mobility N-Type Field Effect Transistors Enabled By Wse2/Pdse2 Heterojunctions, Arthur Bowman Iii Jan 2021

High Mobility N-Type Field Effect Transistors Enabled By Wse2/Pdse2 Heterojunctions, Arthur Bowman Iii

Wayne State University Dissertations

Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDs) have emerged as a promising candidate for post-silicon electronics. Few-layer tungsten diselenide (WSe2), a well-studied TMD, has sown high hole mobility and ON/OFF ratio in field effect transistor (FET) devices. But the n-type performance of WSe2 is still quite limited by the presence of a substantial Schottky Barrier. Palladium diselenide, (PdSe2) is a newly discovered TMD that is of interest because of its high electron mobility, and moderate ON/OFF ratios. However, despite its relatively small bandgap, the n-type performance of few-layer PdSe2 FETs has also been limited by a Schottky barrier, …


Integrated Cyberattack Detection And Resilient Control Strategies Using Lyapunov-Based Economic Model Predictive Control, Henrique Oyama, Helen Durand Oct 2020

Integrated Cyberattack Detection And Resilient Control Strategies Using Lyapunov-Based Economic Model Predictive Control, Henrique Oyama, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

The use of an integrated system framework, characterized by numerous cyber/physical components (sensor measurements, signals to actuators) connected through wired/wireless networks, has not only increased the ability to control industrial systems, but also the vulnerabilities to cyberattacks. State measurement cyberattacks could pose threats to process control systems since feedback control may be lost if the attack policy is not thwarted. Motivated by this, we propose three detection concepts based on Lyapunov‐based economic model predictive control (LEMPC) for nonlinear systems. The first approach utilizes randomized modifications to an LEMPC formulation online to potentially detect cyberattacks. The second method detects attacks when …


Improved Contacts And Device Performance In Mos2 Transistors Using 2d Semiconductor Interlayers, Kraig Andrews Jan 2020

Improved Contacts And Device Performance In Mos2 Transistors Using 2d Semiconductor Interlayers, Kraig Andrews

Wayne State University Dissertations

The rapid growth of modern electronics industry over the past half-century has been sustained by the continued miniaturization of silicon-based electronics. However, as fundamental limits approach, there is a need to search for viable alternative materials for next-generation electronics in the post-silicon era. Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDs) have attracted much attention due to their atomic thickness, absence of dangling bonds and moderately high carrier mobility. However, achieving low-resistance contacts has been major impediment in developing high-performance field-effect transistors (FETs) based on 2D semiconductors. A substantial Schottky barrier (SB) is often present at the metal/2D-semicondcutor interface, …


Process/Equipment Design Implications For Control System Cybersecurity, Helen Durand Jul 2019

Process/Equipment Design Implications For Control System Cybersecurity, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

An emerging challenge for process safety is process control system cybersecurity. An attacker could gain control of the process actuators through the control system or communication policies within control loops and potentially drive the process state to unsafe conditions. Cybersecurity has traditionally been handled as an information technology (IT) problem in the process industries. In the literature for cybersecurity specifically of control systems, there has been work aimed at developing control designs that seek to fight cyberattacks by either giving the system appropriate response mechanisms once attacks are detected or seeking to make the attacks difficult to perform. In this …


A Nonlinear Systems Framework For Cyberattack Prevention For Chemical Process Control Systems, Helen Durand Sep 2018

A Nonlinear Systems Framework For Cyberattack Prevention For Chemical Process Control Systems, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

Recent cyberattacks against industrial control systems highlight the criticality of preventing future attacks from disrupting plants economically or, more critically, from impacting plant safety. This work develops a nonlinear systems framework for understanding cyberattack-resilience of process and control designs and indicates through an analysis of three control designs how control laws can be inspected for this property. A chemical process example illustrates that control approaches intended for cyberattack prevention which seem intuitive are not cyberattack-resilient unless they meet the requirements of a nonlinear systems description of this property.


State Measurement Spoofing Prevention Through Model Predictive Control Design, Helen Durand Aug 2018

State Measurement Spoofing Prevention Through Model Predictive Control Design, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

Security of chemical process control systems against cyberattacks is critical due to the potential for injuries and loss of life when chemical process systems fail. A potential means by which process control systems may be attacked is through the manipulation of the measurements received by the controller. One approach for addressing this is to design controllers that make manipulating the measurements received by the controller in any meaningful fashion very difficult, making the controllers a less attractive target for a cyberattack of this type. In this work, we develop a model predictive control (MPC) implementation strategy that incorporates Lyapunov-based stability …


Video Stream Adaptation In Computer Vision Systems, Yousef Sharrab Sharrab Jan 2017

Video Stream Adaptation In Computer Vision Systems, Yousef Sharrab Sharrab

Wayne State University Dissertations

Computer Vision (CV) has been deployed recently in a wide range of applications, including surveillance and automotive industries. According to a recent report, the market for CV technologies will grow to $33.3 billion by 2019. Surveillance and automotive industries share over 20% of this market. This dissertation considers the design of real-time CV systems with live video streaming, especially those over wireless and mobile networks. Such systems include video cameras/sensors and monitoring stations. The cameras should adapt their captured videos based on the events and/or available resources and time requirement. The monitoring station receives video streams from all cameras and …


Two-Dimensional Low-Resistance Contacts For High Performance Wse2 And Mos2 Transistors, Hsun Jen Chuang Jan 2016

Two-Dimensional Low-Resistance Contacts For High Performance Wse2 And Mos2 Transistors, Hsun Jen Chuang

Wayne State University Dissertations

ABSTRACT

TWO-DIMENSIONAL LOW-RESISTANCE CONTACTS FOR HIGH PERFORMANCE WSe2 and MoS2, TRANSISTORS

by

Hsun-jen Chuang

May 2016

Advisor: Dr. Zhixian Zhou

Major: Physics

Degree: Doctor of Philosophy

Two-dimensional layered materials beyond graphene such as transition metal dichalcogenides (TMDs) have attracted a lot of interests due to their superior property in many aspects. In this work, I am focusing on two TMD materials: WSe2 and MoS2. The main objective this work is to develop novel approaches to fabricating low-resistance ohmic contacts to TMDs for low power, high performance electronic applications. First, we used graphene as electrical contacts for WSe2 field-effect transistor with …


Dense Periodical Patterns In Photonic Devices: Technology For Fabrication And Device Performance, Sabarish Chandramohan Jan 2016

Dense Periodical Patterns In Photonic Devices: Technology For Fabrication And Device Performance, Sabarish Chandramohan

Wayne State University Dissertations

For the fabrication, focused ion beam parameters are investigated to successfully fabricate dense periodical patterns, such as gratings, on hard transition metal nitride such as zirconium nitride. Transition metal nitrides such as titanium nitride and zirconium nitride have recently been studied as alternative materials for plasmonic devices because of its plasmonic resonance in the visible and near-infrared ranges, material strength, CMOS compatibility and optical properties resembling gold. Coupling of light on the surface of these materials using sub-micrometer gratings gives additional capabilities for wider applications. Here we report the fabrication of gratings on the surface of zirconium nitride using gallium …


Building Computing-As-A-Service Mobile Cloud System, Kun Wang Jan 2015

Building Computing-As-A-Service Mobile Cloud System, Kun Wang

Wayne State University Dissertations

The last five years have witnessed the proliferation of smart mobile devices, the explosion of various mobile applications and the rapid adoption of cloud computing in business, governmental and educational IT deployment. There is also a growing trends of combining mobile computing and cloud computing as a new popular computing paradigm nowadays. This thesis envisions the future of mobile computing which is primarily affected by following three trends: First, servers in cloud equipped with high speed multi-core technology have been the main stream today. Meanwhile, ARM processor powered servers is growingly became popular recently and the virtualization on ARM systems …


Development Of Silicon-Based Anodes And In-Situ Characterization Techniques For Lithium Ion Batteries, Jinho Yang Jan 2014

Development Of Silicon-Based Anodes And In-Situ Characterization Techniques For Lithium Ion Batteries, Jinho Yang

Wayne State University Dissertations

Development of lithium ion batteries (LIBs) with higher capacity has been booming worldwide, as growing concerns about environmental issues and increasing petroleum costs. The demands for the LIBs include high energy and power densities, and better cyclic stability in order to meet a wide range of applications, such as portable devices and electric vehicles. Silicon has recently been explored as a promising anode material due to its low discharge potential (<0.4 V) and high specific capacity (4200 mAh g-1). The capacity of silicon potentially exceeds more than 10 times of the conventional graphite anode (372 mAh g-1). However, the silicon anode experiences huge volume …


Parameter Identification And Fault Detection For Reliable Control Of Permanent Magnet Motors, Dusan Vukosav Progovac Jan 2014

Parameter Identification And Fault Detection For Reliable Control Of Permanent Magnet Motors, Dusan Vukosav Progovac

Wayne State University Dissertations

The objective of this dissertation is to develop new fault detection, identification, estimation and control algorithms that will be used to detect winding stator fault, identify the motor parameters and optimally control machine during faulty condition. Quality or proposed algorithms for Fault detection, parameter identification and control under faulty condition will validated through analytical study (Cramer-Rao bound) and simulation. Simulation will be performed for three most applied control schemes: Proportional-Integral-Derivative (PID), Direct Torque Control (DTC) and Field Oriented Control (FOC) for Permanent Magnet Machines. New detection schemes forfault detection, isolation and machine parameter identification are presented and analyzed. Different control …


The Design, Analysis, & Application Of Multi-Modal Real-Time Embedded Systems, Masud Ahmed Jan 2014

The Design, Analysis, & Application Of Multi-Modal Real-Time Embedded Systems, Masud Ahmed

Wayne State University Dissertations

For many hand-held computing devices (e.g., smartphones), multiple operational modes are preferred because of their flexibility. In addition to their designated purposes, some of these devices provide a platform for different types of services, which include rendering of high-quality multimedia. Upon such devices, temporal isolation among co-executing applications is very important to ensure that each application receives an acceptable level of quality-of-service. In order to provide strong guarantees on services, multimedia applications and real-time control systems maintain timing constraints in the form of deadlines for recurring tasks. A flexible real-time multi-modal system will ideally provide system designers the option to …


Modeling Of Mouse Eye And Errors In Ocular Parameters Affecting Refractive State, Gurinder Bawa Jan 2013

Modeling Of Mouse Eye And Errors In Ocular Parameters Affecting Refractive State, Gurinder Bawa

Wayne State University Dissertations

ABSTRACT

MODELING OF MOUSE EYE AND ERRORS IN OCULAR PARAMETERS AFFECTING REFRACTIVE STATE

by

GURINDER BAWA

September 2013

Advisor: Dr. Ivan Avrutsky

Major: Electrical Engineering

Degree: Doctor of Philosophy

Rodents eye are particularly used to study refractive error state of an eye and development of refractive eye. Genetic organization of rodents is similar to that of humans, which makes them interesting candidates to be researched upon. From rodents family mice models are encouraged over rats because of availability of genetically engineered models. Despite of extensive work that has been performed on mice and rat models, still no one is able …


Opacity Of Discrete Event Systems: Analysis And Control, Majed Mohamed Ben Kalefa Jan 2013

Opacity Of Discrete Event Systems: Analysis And Control, Majed Mohamed Ben Kalefa

Wayne State University Dissertations

The exchange of sensitive information in many systems over a network can be manipulated

by unauthorized access. Opacity is a property to investigate security and

privacy problems in such systems. Opacity characterizes whether a secret information

of a system can be inferred by an unauthorized user. One approach to verify security

and privacy properties using opacity problem is to model the system that may leak confidential

information as a discrete event system. The problem that has not investigated

intensively is the enforcement of opacity properties by supervisory control. In other

words, constructing a minimally restrictive supervisor to limit the system's …


Consensus-Type Stochastic Approximation Algorithms, Yu Sun Jan 2012

Consensus-Type Stochastic Approximation Algorithms, Yu Sun

Wayne State University Dissertations

This work is concerned with asymptotic properties of consensus-type algorithms for networked systems whose topologies switch randomly. The regime-switching process is modeled as a discrete-time Markov chain with a nite state space. The consensus control is achieved by designing stochastic approximation algorithms. In the setup, the regime-switching process (the Markov chain) contains a rate parameter

"Ε> 0 in the transition probability matrix that characterizes how frequently the topology switches. On the other hand, the consensus control algorithm uses a step-size Μ that denes how fast the network states are updated. Depending on their relative values, three distinct scenarios emerge. Under …


Efficient Channel Allocation And Medium Access Organization Algorithms For Vehicular Networking, Zaydoun Yahya Rawashdeh Jan 2011

Efficient Channel Allocation And Medium Access Organization Algorithms For Vehicular Networking, Zaydoun Yahya Rawashdeh

Wayne State University Dissertations

Due to the limited bandwidth available for Vehicular Ad-hoc Networks (VANETs), organizing the wireless channel access to efficiently use the bandwidth is one of the main challenges in VANET. In this dissertation, we focus on channel allocation and media access organization for Vehicle-to-Roadside Units (V2R) and Vehicle-to-Vehicle (V2V) communications. An efficient channel allocation algorithm for Roadside Unit (RSU) access is proposed. The goal of the algorithm is to increase system throughput by admitting more tasks (vehicles) and at the same time reduce the risk of the admitted tasks. The algorithm admits the new requests only when their requirements can be …