Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Singapore Management University

Discipline
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 6848

Full-Text Articles in Physical Sciences and Mathematics

Hierarchical Damage Correlations For Old Photo Restoration, Weiwei Cai, Xuemiao Xu, Jiajia Xu, Huaidong Zhang, Haoxin Yang, Kun Zhang, Shengfeng He Jul 2024

Hierarchical Damage Correlations For Old Photo Restoration, Weiwei Cai, Xuemiao Xu, Jiajia Xu, Huaidong Zhang, Haoxin Yang, Kun Zhang, Shengfeng He

Research Collection School Of Computing and Information Systems

Restoring old photographs can preserve cherished memories. Previous methods handled diverse damages within the same network structure, which proved impractical. In addition, these methods cannot exploit correlations among artifacts, especially in scratches versus patch-misses issues. Hence, a tailored network is particularly crucial. In light of this, we propose a unified framework consisting of two key components: ScratchNet and PatchNet. In detail, ScratchNet employs the parallel Multi-scale Partial Convolution Module to effectively repair scratches, learning from multi-scale local receptive fields. In contrast, the patch-misses necessitate the network to emphasize global information. To this end, we incorporate a transformer-based encoder and decoder …


Unveiling The Dynamics Of Crisis Events: Sentiment And Emotion Analysis Via Multi-Task Learning With Attention Mechanism And Subject-Based Intent Prediction, Phyo Yi Win Myint, Siaw Ling Lo, Yuhao Zhang Jul 2024

Unveiling The Dynamics Of Crisis Events: Sentiment And Emotion Analysis Via Multi-Task Learning With Attention Mechanism And Subject-Based Intent Prediction, Phyo Yi Win Myint, Siaw Ling Lo, Yuhao Zhang

Research Collection School Of Computing and Information Systems

In the age of rapid internet expansion, social media platforms like Twitter have become crucial for sharing information, expressing emotions, and revealing intentions during crisis situations. They offer crisis responders a means to assess public sentiment, attitudes, intentions, and emotional shifts by monitoring crisis-related tweets. To enhance sentiment and emotion classification, we adopt a transformer-based multi-task learning (MTL) approach with attention mechanism, enabling simultaneous handling of both tasks, and capitalizing on task interdependencies. Incorporating attention mechanism allows the model to concentrate on important words that strongly convey sentiment and emotion. We compare three baseline models, and our findings show that …


Assessing Impact Of Urban Densification On Outdoor Microclimate And Thermal Comfort Using Envi-Met Simulations For Combined Spatial-Climatic Design (Cscd) Approach, Shreya Banerjee, Rachel X.Y. Pek, Sin Kang Yik, Graces N. Ching, Xiang Tian Ho, Dzyuban Yuliya, Peter J. Crank, Juan A. Acero, Winston T. L. Chow Jun 2024

Assessing Impact Of Urban Densification On Outdoor Microclimate And Thermal Comfort Using Envi-Met Simulations For Combined Spatial-Climatic Design (Cscd) Approach, Shreya Banerjee, Rachel X.Y. Pek, Sin Kang Yik, Graces N. Ching, Xiang Tian Ho, Dzyuban Yuliya, Peter J. Crank, Juan A. Acero, Winston T. L. Chow

Research Collection College of Integrative Studies

Future urban planning requires context-specific integration of spatial design and microclimate especially for tropical cities with extreme weather conditions. Thus, we propose a Combined Spatial-Climatic Design approach to assess impact of urban densification on annual outdoor thermal comfort performance employing ENVI-met simulations for Singapore. We first consider building bylaws and residential site guidelines to develop eight urban-density site options for a target population range. We further classify annual weather data into seven weather-types and use them as boundary conditions for the simulations. Comparing such fifty-six combined spatial-climatic simulation outputs by analyzing Outdoor Thermal Comfort Autonomy, we report the influence of …


Learning Adversarial Semantic Embeddings For Zero-Shot Recognition In Open Worlds, Tianqi Li, Guansong Pang, Xiao Bai, Jin Zheng, Lei Zhou, Xin Ning May 2024

Learning Adversarial Semantic Embeddings For Zero-Shot Recognition In Open Worlds, Tianqi Li, Guansong Pang, Xiao Bai, Jin Zheng, Lei Zhou, Xin Ning

Research Collection School Of Computing and Information Systems

Zero-Shot Learning (ZSL) focuses on classifying samples of unseen classes with only their side semantic information presented during training. It cannot handle real-life, open-world scenarios where there are test samples of unknown classes for which neither samples (e.g., images) nor their side semantic information is known during training. Open-Set Recognition (OSR) is dedicated to addressing the unknown class issue, but existing OSR methods are not designed to model the semantic information of the unseen classes. To tackle this combined ZSL and OSR problem, we consider the case of “Zero-Shot Open-Set Recognition” (ZS-OSR), where a model is trained under the ZSL …


Diffusion-Based Negative Sampling On Graphs For Link Prediction, Yuan Fang, Yuan Fang May 2024

Diffusion-Based Negative Sampling On Graphs For Link Prediction, Yuan Fang, Yuan Fang

Research Collection School Of Computing and Information Systems

Link prediction is a fundamental task for graph analysis with important applications on the Web, such as social network analysis and recommendation systems, etc. Modern graph link prediction methods often employ a contrastive approach to learn robust node representations, where negative sampling is pivotal. Typical negative sampling methods aim to retrieve hard examples based on either predefined heuristics or automatic adversarial approaches, which might be inflexible or difficult to control. Furthermore, in the context of link prediction, most previous methods sample negative nodes from existing substructures of the graph, missing out on potentially more optimal samples in the latent space. …


On The Feasibility Of Simple Transformer For Dynamic Graph Modeling, Yuxia Wu, Yuan Fang, Lizi Liao May 2024

On The Feasibility Of Simple Transformer For Dynamic Graph Modeling, Yuxia Wu, Yuan Fang, Lizi Liao

Research Collection School Of Computing and Information Systems

Dynamic graph modeling is crucial for understanding complex structures in web graphs, spanning applications in social networks, recommender systems, and more. Most existing methods primarily emphasize structural dependencies and their temporal changes. However, these approaches often overlook detailed temporal aspects or struggle with long-term dependencies. Furthermore, many solutions overly complicate the process by emphasizing intricate module designs to capture dynamic evolutions. In this work, we harness the strength of the Transformer’s self-attention mechanism, known for adeptly handling long-range dependencies in sequence modeling. Our approach offers a simple Transformer model, called SimpleDyG, tailored for dynamic graph modeling without complex modifications. We …


Multigprompt For Multi-Task Pre-Training And Prompting On Graphs, Xingtong Yu, Chang Zhou, Yuan Fang, Xinming Zhan May 2024

Multigprompt For Multi-Task Pre-Training And Prompting On Graphs, Xingtong Yu, Chang Zhou, Yuan Fang, Xinming Zhan

Research Collection School Of Computing and Information Systems

Graph Neural Networks (GNNs) have emerged as a mainstream technique for graph representation learning. However, their efficacy within an end-to-end supervised framework is significantly tied to the availability of task-specific labels. To mitigate labeling costs and enhance robustness in few-shot settings, pre-training on self-supervised tasks has emerged as a promising method, while prompting has been proposed to further narrow the objective gap between pretext and downstream tasks. Although there has been some initial exploration of prompt-based learning on graphs, they primarily leverage a single pretext task, resulting in a limited subset of general knowledge that could be learned from the …


An Adaptive Large Neighborhood Search For The Multi-Vehicle Profitable Tour Problem With Flexible Compartments And Mandatory Customers, Vincent F. Yu, Nabila Yuraisyah Salsabila, Aldy Gunawan, Anggun Nurfitriani Handoko May 2024

An Adaptive Large Neighborhood Search For The Multi-Vehicle Profitable Tour Problem With Flexible Compartments And Mandatory Customers, Vincent F. Yu, Nabila Yuraisyah Salsabila, Aldy Gunawan, Anggun Nurfitriani Handoko

Research Collection School Of Computing and Information Systems

The home-refill delivery system is a business model that addresses the concerns of plastic waste and its impact on the environment. It allows customers to pick up their household goods at their doorsteps and refill them into their own containers. However, the difficulty in accessing customers’ locations and product consolidations are undeniable challenges. To overcome these issues, we introduce a new variant of the Profitable Tour Problem, named the multi-vehicle profitable tour problem with flexible compartments and mandatory customers (MVPTPFC-MC). The objective is to maximize the difference between the total collected profit and the traveling cost. We model the proposed …


An Evaluation Of Heart Rate Monitoring With In-Ear Microphones Under Motion, Kayla-Jade Butkow, Ting Dang, Andrea Ferlini, Dong Ma, Yang Liu, Cecilia Mascolo May 2024

An Evaluation Of Heart Rate Monitoring With In-Ear Microphones Under Motion, Kayla-Jade Butkow, Ting Dang, Andrea Ferlini, Dong Ma, Yang Liu, Cecilia Mascolo

Research Collection School Of Computing and Information Systems

With the soaring adoption of in-ear wearables, the research community has started investigating suitable in-ear heart rate detection systems. Heart rate is a key physiological marker of cardiovascular health and physical fitness. Continuous and reliable heart rate monitoring with wearable devices has therefore gained increasing attention in recent years. Existing heart rate detection systems in wearables mainly rely on photoplethysmography (PPG) sensors, however, these are notorious for poor performance in the presence of human motion. In this work, leveraging the occlusion effect that enhances low-frequency bone-conducted sounds in the ear canal, we investigate for the first time in-ear audio-based motion-resilient …


Marco: A Stochastic Asynchronous Concolic Explorer, Jie Hu, Yue Duan, Heng Yin Apr 2024

Marco: A Stochastic Asynchronous Concolic Explorer, Jie Hu, Yue Duan, Heng Yin

Research Collection School Of Computing and Information Systems

Concolic execution is a powerful program analysis technique for code path exploration. Despite recent advances that greatly improved the efficiency of concolic execution engines, path constraint solving remains a major bottleneck of concolic testing. An intelligent scheduler for inputs/branches becomes even more crucial. Our studies show that the previously under-studied branch-flipping policy adopted by state-of-the-art concolic execution engines has several limitations. We propose to assess each branch by its potential for new code coverage from a global view, concerning the path divergence probability at each branch. To validate this idea, we implemented a prototype Marco and evaluated it against the …


Towards Low-Resource Rumor Detection: Unified Contrastive Transfer With Propagation Structure, Hongzhan Lin, Jing Ma, Ruichao Yang, Zhiwei Yang, Mingfei Cheng Apr 2024

Towards Low-Resource Rumor Detection: Unified Contrastive Transfer With Propagation Structure, Hongzhan Lin, Jing Ma, Ruichao Yang, Zhiwei Yang, Mingfei Cheng

Research Collection School Of Computing and Information Systems

The truth is significantly hampered by massive rumors that spread along with breaking news or popular topics. Since there is sufficient corpus gathered from the same domain for model training, existing rumor detection algorithms show promising performance on yesterday's news. However, due to a lack of substantial training data and prior expert knowledge, they are poor at spotting rumors concerning unforeseen events, especially those propagated in different languages (i.e., low-resource regimes). In this paper, we propose a simple yet effective framework with unified contrastive transfer learning, to detect rumors by adapting the features learned from well-resourced rumor data to that …


Acav: A Framework For Automatic Causality Analysis In Autonomous Vehicle Accident Recordings, Huijia Sun, Christopher M. Poskitt, Yang Sun, Jun Sun, Yuqi Chen Apr 2024

Acav: A Framework For Automatic Causality Analysis In Autonomous Vehicle Accident Recordings, Huijia Sun, Christopher M. Poskitt, Yang Sun, Jun Sun, Yuqi Chen

Research Collection School Of Computing and Information Systems

The rapid progress of autonomous vehicles (AVs) has brought the prospect of a driverless future closer than ever. Recent fatalities, however, have emphasized the importance of safety validation through large-scale testing. Multiple approaches achieve this fully automatically using high-fidelity simulators, i.e., by generating diverse driving scenarios and evaluating autonomous driving systems (ADSs) against different test oracles. While effective at finding violations, these approaches do not identify the decisions and actions that caused them -- information that is critical for improving the safety of ADSs. To address this challenge, we propose ACAV, an automated framework designed to conduct causality analysis for …


Discovering Significant Topics From Legal Decisions With Selective Inference, Jerrold Tsin Howe Soh Apr 2024

Discovering Significant Topics From Legal Decisions With Selective Inference, Jerrold Tsin Howe Soh

Research Collection Yong Pung How School Of Law

We propose and evaluate an automated pipeline for discovering significant topics from legal decision texts by passing features synthesized with topic models through penalized regressions and post-selection significance tests. The method identifies case topics significantly correlated with outcomes, topic-word distributions which can be manually interpreted to gain insights about significant topics, and case-topic weights which can be used to identify representative cases for each topic. We demonstrate the method on a new dataset of domain name disputes and a canonical dataset of European Court of Human Rights violation cases. Topic models based on latent semantic analysis as well as language …


Environmental, Social, And Governance (Esg) And Artificial Intelligence In Finance: State-Of-The-Art And Research Takeaways, Trstan Lim Apr 2024

Environmental, Social, And Governance (Esg) And Artificial Intelligence In Finance: State-Of-The-Art And Research Takeaways, Trstan Lim

Research Collection School Of Computing and Information Systems

The rapidly growing research landscape in finance, encompassing environmental, social, and governance (ESG) topics and associated Artificial Intelligence (AI) applications, presents challenges for both new researchers and seasoned practitioners. This study aims to systematically map the research area, identify knowledge gaps, and examine potential research areas for researchers and practitioners. The investigation focuses on three primary research questions: the main research themes concerning ESG and AI in finance, the evolution of research intensity and interest in these areas, and the application and evolution of AI techniques specifically in research studies within the ESG and AI in finance domain. Eight archetypical …


Editorial: Emerging On-Demand Passenger And Logistics Systems: Modelling, Optimization, And Data Analytics, Jintao Ke, Hai Wang, Neda Masoud, Maximilian Schiffer, Goncalo H. A. Correia Apr 2024

Editorial: Emerging On-Demand Passenger And Logistics Systems: Modelling, Optimization, And Data Analytics, Jintao Ke, Hai Wang, Neda Masoud, Maximilian Schiffer, Goncalo H. A. Correia

Research Collection School Of Computing and Information Systems

The proliferation of smart personal devices and mobile internet access has fueled numerous advancements in on-demand transportation services. These services are facilitated by online digital platforms and range from providing rides to delivering products. Their influence is transforming transportation systems and leaving a mark on changing individual mobility, activity patterns, and consumption behaviors. For instance, on-demand transportation companies such as Uber, Lyft, Grab, and DiDi have become increasingly vital for meeting urban transportation needs by connecting available drivers with passengers in real time. The recent surge in door-to-door food delivery (e.g., Uber Eats, DoorDash, Meituan); grocery delivery (e.g., Amazon Fresh, …


Redriver: Runtime Enforcement For Autonomous Vehicles, Yang Sun, Christopher M. Poskitt, Xiaodong Zhang, Jun Sun Apr 2024

Redriver: Runtime Enforcement For Autonomous Vehicles, Yang Sun, Christopher M. Poskitt, Xiaodong Zhang, Jun Sun

Research Collection School Of Computing and Information Systems

Autonomous driving systems (ADSs) integrate sensing, perception, drive control, and several other critical tasks in autonomous vehicles, motivating research into techniques for assessing their safety. While there are several approaches for testing and analysing them in high-fidelity simulators, ADSs may still encounter additional critical scenarios beyond those covered once they are deployed on real roads. An additional level of confidence can be established by monitoring and enforcing critical properties when the ADS is running. Existing work, however, is only able to monitor simple safety properties (e.g., avoidance of collisions) and is limited to blunt enforcement mechanisms such as hitting the …


Exploring The Potential Of Chatgpt In Automated Code Refinement: An Empirical Study, Qi Guo, Shangqing Liu, Junming Cao, Xiaohong Li, Xin Peng, Xiaofei Xie, Bihuan Chen Apr 2024

Exploring The Potential Of Chatgpt In Automated Code Refinement: An Empirical Study, Qi Guo, Shangqing Liu, Junming Cao, Xiaohong Li, Xin Peng, Xiaofei Xie, Bihuan Chen

Research Collection School Of Computing and Information Systems

Code review is an essential activity for ensuring the quality and maintainability of software projects. However, it is a time-consuming and often error-prone task that can significantly impact the development process. Recently, ChatGPT, a cutting-edge language model, has demonstrated impressive performance in various natural language processing tasks, suggesting its potential to automate code review processes. However, it is still unclear how well ChatGPT performs in code review tasks. To fill this gap, in this paper, we conduct the first empirical study to understand the capabilities of ChatGPT in code review tasks, specifically focusing on automated code refinement based on given …


Maximizing The Ai Revolution In Southeast Asia, Shoeb Kagda Mar 2024

Maximizing The Ai Revolution In Southeast Asia, Shoeb Kagda

Asian Management Insights

For that, the region must narrow the digital divide.


Superminds At Work: The Promise Of Human-Ai Collaboration, Thomas W. Malone Mar 2024

Superminds At Work: The Promise Of Human-Ai Collaboration, Thomas W. Malone

Asian Management Insights

Massachusetts Institute of Technology (MIT) Center for Collective Intelligence Director Professor Thomas W. Malone’s scholarship offers deep insights into the promise afforded by the synergies between human intelligence and technology. According to Professor Malone, the boundaries between human intellect and technological prowess are becoming increasingly blurred, but this may not be a bad thing for humankind. In Asian Management Insights’ inaugural Pulse Point interview, we get to learn more about the concept of ‘collective intelligence’, which explores how a partnership between humans and Artificial Intelligence (AI) can be catalysed to make ground-breaking advancements in addressing the wicked problems of our …


Navigating Through Chaos, Hoong Chuin Lau Mar 2024

Navigating Through Chaos, Hoong Chuin Lau

Asian Management Insights

How AI and optimisation models can strengthen supply chain resilience.


Forging The Future: Strategic Approaches To Quantum Ai Integration For Industry Transformation, Meng Leong How, Sin Mei Cheah Mar 2024

Forging The Future: Strategic Approaches To Quantum Ai Integration For Industry Transformation, Meng Leong How, Sin Mei Cheah

CMP Research

The fusion of quantum computing and artificial intelligence (AI) heralds a transformative era for Industry 4.0, offering unprecedented capabilities and challenges. This paper delves into the intricacies of quantum AI, its potential impact on Industry 4.0, and the necessary change management and innovation strategies for seamless integration. Drawing from theoretical insights and real-world case studies, we explore the current landscape of quantum AI, its foreseeable influence, and the implications for organizational strategy. We further expound on traditional change management tactics, emphasizing the importance of continuous learning, ecosystem collaborations, and proactive approaches. By examining successful and failed quantum AI implementations, lessons …


Non-Monotonic Generation Of Knowledge Paths For Context Understanding, Pei-Chi Lo, Ee-Peng Lim Mar 2024

Non-Monotonic Generation Of Knowledge Paths For Context Understanding, Pei-Chi Lo, Ee-Peng Lim

Research Collection School Of Computing and Information Systems

Knowledge graphs can be used to enhance text search and access by augmenting textual content with relevant background knowledge. While many large knowledge graphs are available, using them to make semantic connections between entities mentioned in the textual content remains to be a difficult task. In this work, we therefore introduce contextual path generation (CPG) which refers to the task of generating knowledge paths, contextual path, to explain the semantic connections between entities mentioned in textual documents with given knowledge graph. To perform CPG task well, one has to address its three challenges, namely path relevance, incomplete knowledge graph, and …


Conditional Neural Heuristic For Multiobjective Vehicle Routing Problems, Mingfeng Fan, Yaoxin Wu, Zhiguang Cao, Wen Song, Guillaume Sartoretti, Huan Liu, Guohua Wu Mar 2024

Conditional Neural Heuristic For Multiobjective Vehicle Routing Problems, Mingfeng Fan, Yaoxin Wu, Zhiguang Cao, Wen Song, Guillaume Sartoretti, Huan Liu, Guohua Wu

Research Collection School Of Computing and Information Systems

Existing neural heuristics for multiobjective vehicle routing problems (MOVRPs) are primarily conditioned on instance context, which failed to appropriately exploit preference and problem size, thus holding back the performance. To thoroughly unleash the potential, we propose a novel conditional neural heuristic (CNH) that fully leverages the instance context, preference, and size with an encoder–decoder structured policy network. Particularly, in our CNH, we design a dual-attention-based encoder to relate preferences and instance contexts, so as to better capture their joint effect on approximating the exact Pareto front (PF). We also design a size-aware decoder based on the sinusoidal encoding to explicitly …


Knowledge Generation For Zero-Shot Knowledge-Based Vqa, Rui Cao, Jing Jiang Mar 2024

Knowledge Generation For Zero-Shot Knowledge-Based Vqa, Rui Cao, Jing Jiang

Research Collection School Of Computing and Information Systems

Previous solutions to knowledge-based visual question answering (K-VQA) retrieve knowledge from external knowledge bases and use supervised learning to train the K-VQA model. Recently pre-trained LLMs have been used as both a knowledge source and a zero-shot QA model for K-VQA and demonstrated promising results. However, these recent methods do not explicitly show the knowledge needed to answer the questions and thus lack interpretability. Inspired by recent work on knowledge generation from LLMs for text-based QA, in this work we propose and test a similar knowledge-generation-based K-VQA method, which first generates knowledge from an LLM and then incorporates the generated …


Hypergraphs With Attention On Reviews For Explainable Recommendation, Theis E. Jendal, Trung Hoang Le, Hady Wirawan Lauw, Matteo Lissandrini, Peter Dolog, Katja Hose Mar 2024

Hypergraphs With Attention On Reviews For Explainable Recommendation, Theis E. Jendal, Trung Hoang Le, Hady Wirawan Lauw, Matteo Lissandrini, Peter Dolog, Katja Hose

Research Collection School Of Computing and Information Systems

Given a recommender system based on reviews, the challenges are how to effectively represent the review data and how to explain the produced recommendations. We propose a novel review-specific Hypergraph (HG) model, and further introduce a model-agnostic explainability module. The HG model captures high-order connections between users, items, aspects, and opinions while maintaining information about the review. The explainability module can use the HG model to explain a prediction generated by any model. We propose a path-restricted review-selection method biased by the user preference for item reviews and propose a novel explanation method based on a review graph. Experiments on …


Community Similarity Based On User Profile Joins, Konstantinos Theocharidis, Hady Wirawan Lauw Mar 2024

Community Similarity Based On User Profile Joins, Konstantinos Theocharidis, Hady Wirawan Lauw

Research Collection School Of Computing and Information Systems

Similarity joins on multidimensional data are crucial operators for recommendation purposes. The classic ��-join problem finds all pairs of points within �� distance to each other among two ��-dimensional datasets. In this paper, we consider a novel and alternative version of ��-join named community similarity based on user profile joins (CSJ). The aim of CSJ problem is, given two communities having a set of ��-dimensional users, to find how similar are the communities by matching every single pair of users (a user can be matched with at most one other user) having an absolute difference of at most �� per …


Revisiting The Markov Property For Machine Translation, Cunxiao Du, Hao Zhou, Zhaopeng Tu, Jing Jiang Mar 2024

Revisiting The Markov Property For Machine Translation, Cunxiao Du, Hao Zhou, Zhaopeng Tu, Jing Jiang

Research Collection School Of Computing and Information Systems

In this paper, we re-examine the Markov property in the context of neural machine translation. We design a Markov Autoregressive Transformer (MAT) and undertake a comprehensive assessment of its performance across four WMT benchmarks. Our findings indicate that MAT with an order larger than 4 can generate translations with quality on par with that of conventional autoregressive transformers. In addition, counter-intuitively, we also find that the advantages of utilizing a higher-order MAT do not specifically contribute to the translation of longer sentences.


On The Effects Of Information Asymmetry In Digital Currency Trading, Kwansoo Kim, Robert John Kauffman Mar 2024

On The Effects Of Information Asymmetry In Digital Currency Trading, Kwansoo Kim, Robert John Kauffman

Research Collection School Of Computing and Information Systems

We report on two studies that examine how social sentiment influences information asymmetry in digital currency markets. We also assess whether cryptocurrency can be an investment vehicle, as opposed to only an instrument for asset speculation. Using a dataset on transactions from an exchange in South Korea and sentiment from Korean social media in 2018, we conducted a study of different trading behavior under two cryptocurrency trading market microstructures: a bid-ask spread dealer's market and a continuous trading buy-sell, immediate trade execution market. Our results highlight the impacts of positive and negative trader social sentiment valences on the effects of …


Monocular Bev Perception Of Road Scenes Via Front-To-Top View Projection, Wenxi Liu, Qi Li, Weixiang Yang, Jiaxin Cai, Yuanhong Yu, Yuexin Ma, Shengfeng He, Jia Pan Mar 2024

Monocular Bev Perception Of Road Scenes Via Front-To-Top View Projection, Wenxi Liu, Qi Li, Weixiang Yang, Jiaxin Cai, Yuanhong Yu, Yuexin Ma, Shengfeng He, Jia Pan

Research Collection School Of Computing and Information Systems

HD map reconstruction is crucial for autonomous driving. LiDAR-based methods are limited due to expensive sensors and time-consuming computation. Camera-based methods usually need to perform road segmentation and view transformation separately, which often causes distortion and missing content. To push the limits of the technology, we present a novel framework that reconstructs a local map formed by road layout and vehicle occupancy in the bird's-eye view given a front-view monocular image only. We propose a front-to-top view projection (FTVP) module, which takes the constraint of cycle consistency between views into account and makes full use of their correlation to strengthen …


Stopguess: A Framework For Public-Key Authenticated Encryption With Keyword Search, Tao Xiang, Zhongming Wang, Biwen Chen, Xiaoguo Li, Peng Wang, Fei Chen Mar 2024

Stopguess: A Framework For Public-Key Authenticated Encryption With Keyword Search, Tao Xiang, Zhongming Wang, Biwen Chen, Xiaoguo Li, Peng Wang, Fei Chen

Research Collection School Of Computing and Information Systems

Public key encryption with keyword search (PEKS) allows users to search on encrypted data without leaking the keyword information from the ciphertexts. But it does not preserve keyword privacy within the trapdoors, because an adversary (e.g., untrusted server) might launch inside keyword-guessing attacks (IKGA) to guess keywords from the trapdoors. In recent years, public key authenticated encryption with keyword search (PAEKS) has become a promising primitive to counter the IKGA. However, existing PAEKS schemes focus on the concrete construction of PAEKS, making them unable to support modular construction, intuitive proof, or flexible extension. In this paper, our proposal called “StopGuess” …