Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Singapore Management University

Discipline
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 5943

Full-Text Articles in Physical Sciences and Mathematics

The Vehicle Routing Problem With Simultaneous Pickup And Delivery And Occasional Drivers, Vincent F. Yu, Grace Aloina, Panca Jodiawan, Aldy Gunawan, Tsung-C. Huang Mar 2023

The Vehicle Routing Problem With Simultaneous Pickup And Delivery And Occasional Drivers, Vincent F. Yu, Grace Aloina, Panca Jodiawan, Aldy Gunawan, Tsung-C. Huang

Research Collection School Of Computing and Information Systems

This research addresses the Vehicle Routing Problem with Simultaneous Pickup and Delivery and Occasional Drivers (VRPSPDOD), which is inspired from the importance of addressing product returns and the emerging notion of involving available crowds to perform pickup and delivery activities in exchange for some compensation. At the depot, a set of regular vehicles is available to deliver and/or pick up customers’ goods. A set of occasional drivers, each defined by their origin, destination, and flexibility, is also able to help serve the customers. The objective of VRPSPDOD is to minimize the total traveling cost of operating regular vehicles and total …


Learning Comprehensive Global Features In Person Re-Identification: Ensuring Discriminativeness Of More Local Regions, Jiali Xia, Jianqiang Huang, Shibao Zheng, Qin Zhou, Bernt Schiele, Xian-Sheng Hua, Qianru Sun Feb 2023

Learning Comprehensive Global Features In Person Re-Identification: Ensuring Discriminativeness Of More Local Regions, Jiali Xia, Jianqiang Huang, Shibao Zheng, Qin Zhou, Bernt Schiele, Xian-Sheng Hua, Qianru Sun

Research Collection School Of Computing and Information Systems

Person re-identification (Re-ID) aims to retrieve person images from a large gallery given a query image of a person of interest. Global information and fine-grained local features are both essential for the representation. However, global embedding learned by naive classification model tends to be trapped in the most discriminative local region, leading to poor evaluation performance. To address the issue, we propose a novel baseline network that learns strong global feature termed as Comprehensive Global Embedding (CGE), ensuring more local regions of global feature maps to be discriminative. In this work, two key modules are proposed including Non-parameterized Local Classifier …


Safe Delivery Of Critical Services In Areas With Volatile Security Situation Via A Stackelberg Game Approach, Tien Mai, Arunesh Sinha Feb 2023

Safe Delivery Of Critical Services In Areas With Volatile Security Situation Via A Stackelberg Game Approach, Tien Mai, Arunesh Sinha

Research Collection School Of Computing and Information Systems

Vaccine delivery in under-resourced locations with security risks is not just challenging but also life threatening. The COVID pandemic and the need to vaccinate added even more urgency to this issue. Motivated by this problem, we propose a general framework to set-up limited temporary (vaccination) centers that balance physical security and desired (vaccine) service coverage with limited resources. We set-up the problem as a Stackelberg game between the centers operator (defender) and an adversary, where the set of centers is not fixed a priori but is part of the decision output. This results in a mixed combinatorial and continuous optimization …


A Fair Incentive Scheme For Community Health Workers, Avinandan Bose, Tracey Li, Arunesh Sinha, Tien Mai Feb 2023

A Fair Incentive Scheme For Community Health Workers, Avinandan Bose, Tracey Li, Arunesh Sinha, Tien Mai

Research Collection School Of Computing and Information Systems

Community health workers (CHWs) play a crucial role in the last mile delivery of essential health services to under-served populations in low-income countries. Many non-governmental organizations (NGOs) provide training and support to enable CHWs to deliver health services to their communities, with no charge to the recipients of the services. This includes monetary compensation for the work that CHWs perform, which is broken down into a series of well-defined tasks. In this work, we partner with a NGO D-Tree International to design a fair monetary compensation scheme for tasks performed by CHWs in the semi-autonomous region of Zanzibar in Tanzania, …


Online Hyperparameter Optimization For Class-Incremental Learning, Yaoyao Liu, Yingying Li, Bernt Schiele, Qianru Sun Feb 2023

Online Hyperparameter Optimization For Class-Incremental Learning, Yaoyao Liu, Yingying Li, Bernt Schiele, Qianru Sun

Research Collection School Of Computing and Information Systems

Class-incremental learning (CIL) aims to train a classification model while the number of classes increases phase-by-phase. An inherent challenge of CIL is the stability-plasticity tradeoff, i.e., CIL models should keep stable to retain old knowledge and keep plastic to absorb new knowledge. However, none of the existing CIL models can achieve the optimal tradeoff in different data-receiving settings—where typically the training-from-half (TFH) setting needs more stability, but the training-from-scratch (TFS) needs more plasticity. To this end, we design an online learning method that can adaptively optimize the tradeoff without knowing the setting as a priori. Specifically, we first introduce the …


Research@Smu: Sustainable Living, Singapore Management University Jan 2023

Research@Smu: Sustainable Living, Singapore Management University

Research Collection Office of Research & Tech Transfer

Sustainable Living is one of the three key priorities of the SMU 2025 Strategy, and the University is committed to develop it into an area of cross-disciplinary strength. The articles in this booklet highlight impactful sustainability research accomplishments at SMU, which spans five broad pillars: Sustainable Business Operations; Sustainable Finance and Impact Assessment; Sustainable Ageing and Wellness; Sustainable Urban Infrastructure; and Sustainable Agro-business and Food Consumption.

Contents:

Sustainable Business Operations

  • Managing the Load on Loading Bays
  • Going the Last-mile
  • Feeding a Growing World
  • Pooling the Benefits of Sharing a Ride

Sustainable Finance and Impact Assessment

  • When Going Green Becomes a …


Neighborhood Retail Amenities And Taxi Trip Behavior: A Natural Experiment In Singapore, Kwan Ok Lee, Shih-Fen Cheng Jan 2023

Neighborhood Retail Amenities And Taxi Trip Behavior: A Natural Experiment In Singapore, Kwan Ok Lee, Shih-Fen Cheng

Research Collection School Of Computing and Information Systems

While a small change in land use planning in existing neighborhoods may significantly reduce private vehicle trips, we do not have a great understanding of the magnitude of the project- and shock-based causal change in travel behaviors, especially for the retail purpose. We analyze the impact of newly developed malls on the retail trip behavior of nearby residents for shopping, dining or services. Using the difference-in-differences approach and big data from a major taxi company in Singapore, we find that households residing within 800 m from a new mall are significantly less likely to take taxis to other retail destinations …


A Unified Dialogue User Simulator For Few-Shot Data Augmentation, Dazhen Wan, Zheng Zhang, Qi Zhu, Lizi Liao, Minlie Huang Dec 2022

A Unified Dialogue User Simulator For Few-Shot Data Augmentation, Dazhen Wan, Zheng Zhang, Qi Zhu, Lizi Liao, Minlie Huang

Research Collection School Of Computing and Information Systems

Pre-trained language models have shown superior performance in task-oriented dialogues. However, existing datasets are on limited scales, which cannot support large-scale pre-training. Fortunately, various data augmentation methods have been developed to augment largescale task-oriented dialogue corpora. However, they heavily rely on annotated data in the target domain, which require a tremendous amount of data collection and human labeling work. In this paper, we build a unified dialogue user simulation model by pre-training on several publicly available datasets. The model can then be tuned on a target domain with fewshot data. The experiments on a target dataset across multiple domains show …


Opportunities And Challenges In Code Search Tools, Chao Liu, Xin Xia, David Lo, Cuiying Gao, Xiaohu Yang, John Grundy Dec 2022

Opportunities And Challenges In Code Search Tools, Chao Liu, Xin Xia, David Lo, Cuiying Gao, Xiaohu Yang, John Grundy

Research Collection School Of Computing and Information Systems

Code search is a core software engineering task. Effective code search tools can help developers substantially improve their software development efficiency and effectiveness. In recent years, many code search studies have leveraged different techniques, such as deep learning and information retrieval approaches, to retrieve expected code from a large-scale codebase. However, there is a lack of a comprehensive comparative summary of existing code search approaches. To understand the research trends in existing code search studies, we systematically reviewed 81 relevant studies. We investigated the publication trends of code search studies, analyzed key components, such as codebase, query, and modeling technique …


An Efficient Annealing-Assisted Differential Evolution For Multi-Parameter Adaptive Latent Factor Analysis, Qing Li, Guansong Pang, Mingsheng Shang Dec 2022

An Efficient Annealing-Assisted Differential Evolution For Multi-Parameter Adaptive Latent Factor Analysis, Qing Li, Guansong Pang, Mingsheng Shang

Research Collection School Of Computing and Information Systems

A high-dimensional and incomplete (HDI) matrix is a typical representation of big data. However, advanced HDI data analysis models tend to have many extra parameters. Manual tuning of these parameters, generally adopting the empirical knowledge, unavoidably leads to additional overhead. Although variable adaptive mechanisms have been proposed, they cannot balance the exploration and exploitation with early convergence. Moreover, learning such multi-parameters brings high computational time, thereby suffering gross accuracy especially when solving a bilinear problem like conducting the commonly used latent factor analysis (LFA) on an HDI matrix. Herein, an efficient annealing-assisted differential evolution for multi-parameter adaptive latent factor analysis …


Segment-Wise Time-Varying Dynamic Bayesian Network With Graph Regularization, Xing Yang, Chen Zhang, Baihua Zheng Dec 2022

Segment-Wise Time-Varying Dynamic Bayesian Network With Graph Regularization, Xing Yang, Chen Zhang, Baihua Zheng

Research Collection School Of Computing and Information Systems

Time-varying dynamic Bayesian network (TVDBN) is essential for describing time-evolving directed conditional dependence structures in complex multivariate systems. In this article, we construct a TVDBN model, together with a score-based method for its structure learning. The model adopts a vector autoregressive (VAR) model to describe inter-slice and intra-slice relations between variables. By allowing VAR parameters to change segment-wisely over time, the time-varying dynamics of the network structure can be described. Furthermore, considering some external information can provide additional similarity information of variables. Graph Laplacian is further imposed to regularize similar nodes to have similar network structures. The regularized maximum a …


A Logistic Regression And Linear Programming Approach For Multi-Skill Staffing Optimization In Call Centers, Thuy Anh Ta, Tien Mai, Fabian Bastin, Pierre L'Ecuyer Dec 2022

A Logistic Regression And Linear Programming Approach For Multi-Skill Staffing Optimization In Call Centers, Thuy Anh Ta, Tien Mai, Fabian Bastin, Pierre L'Ecuyer

Research Collection School Of Computing and Information Systems

We study a staffing optimization problem in multi-skill call centers. The objective is to minimize the total cost of agents under some quality of service (QoS) constraints. The key challenge lies in the fact that the QoS functions have no closed-form and need to be approximated by simulation. In this paper we propose a new way to approximate the QoS functions by logistic functions and design a new algorithm that combines logistic regression, cut generations and logistic-based local search to efficiently find good staffing solutions. We report computational results using examples up to 65 call types and 89 agent groups …


Scalable Distributional Robustness In A Class Of Non Convex Optimization With Guarantees, Avinandan Bose, Arunesh Sinha, Tien Mai Dec 2022

Scalable Distributional Robustness In A Class Of Non Convex Optimization With Guarantees, Avinandan Bose, Arunesh Sinha, Tien Mai

Research Collection School Of Computing and Information Systems

Distributionally robust optimization (DRO) has shown lot of promise in providing robustness in learning as well as sample based optimization problems. We endeavor to provide DRO solutions for a class of sum of fractionals, non-convex optimization which is used for decision making in prominent areas such as facility location and security games. In contrast to previous work, we find it more tractable to optimize the equivalent variance regularized form of DRO rather than the minimax form. We transform the variance regularized form to a mixed-integer second order cone program (MISOCP), which, while guaranteeing near global optimality, does not scale enough …


Dronlomaly: Runtime Detection Of Anomalous Drone Behaviors Via Log Analysis And Deep Learning, Lwin Khin Shar, Wei Minn, Nguyen Binh Duong Ta, Lingxiao Jiang, Daniel Wai Kiat Lim, Wai Kiat David Lim Dec 2022

Dronlomaly: Runtime Detection Of Anomalous Drone Behaviors Via Log Analysis And Deep Learning, Lwin Khin Shar, Wei Minn, Nguyen Binh Duong Ta, Lingxiao Jiang, Daniel Wai Kiat Lim, Wai Kiat David Lim

Research Collection School Of Computing and Information Systems

Drones are increasingly popular and getting used in a variety of missions such as area surveillance, pipeline inspection, cinematography, etc. While the drone is conducting a mission, anomalies such as sensor fault, actuator fault, configuration errors, bugs in controller program, remote cyber- attack, etc., may affect the drone’s physical stability and cause serious safety violations such as crashing into the public. During a flight mission, drones typically log flight status and state units such as GPS coordinates, actuator outputs, accelerator readings, gyroscopic readings, etc. These log data may reflect the above-mentioned anomalies. In this paper, we propose a novel, deep …


Conversation Disentanglement With Bi-Level Contrastive Learning, Chengyu Huang, Hao Fei, Lizi Liao, Lizi Liao Dec 2022

Conversation Disentanglement With Bi-Level Contrastive Learning, Chengyu Huang, Hao Fei, Lizi Liao, Lizi Liao

Research Collection School Of Computing and Information Systems

Conversation disentanglement aims to group utterances into detached sessions, which is a fundamental task in processing multi-party conversations. Existing methods have two main drawbacks. First, they overemphasize pairwise utterance relations but pay inadequate attention to the utterance-to-context relation modeling. Second, a huge amount of human annotated data is required for training, which is expensive to obtain in practice. To address these issues, we propose a general disentangle model based on bi-level contrastive learning. It brings closer utterances in the same session while encourages each utterance to be near its clustered session prototypes in the representation space. Unlike existing approaches, our …


Vr Computing Lab: An Immersive Classroom For Computing Learning, Huan Shan Shawn Pang, Kyong Jin Shim, Yi Meng Lau, Gottipati Swapna Dec 2022

Vr Computing Lab: An Immersive Classroom For Computing Learning, Huan Shan Shawn Pang, Kyong Jin Shim, Yi Meng Lau, Gottipati Swapna

Research Collection School Of Computing and Information Systems

In recent years, virtual reality (VR) is gaining popularity amongst educators and learners. If a picture is worth a thousand words, a VR session is worth a trillion words. VR technology completely immerses users with an experience that transports them into a simulated world. Universities across the United States, United Kingdom, and other countries have already started using VR for higher education in areas such as medicine, business, architecture, vocational training, social work, virtual field trips, virtual campuses, helping students with special needs, and many more. In this paper, we propose a novel VR platform learning framework which maps elements …


Gamified Online Industry Learning Platform For Teaching Of Foundational Computing Skills, Yi Meng Lau, Rafael Jose Barros Barrios, Gottipati Swapna, Kyong Jin Shim Dec 2022

Gamified Online Industry Learning Platform For Teaching Of Foundational Computing Skills, Yi Meng Lau, Rafael Jose Barros Barrios, Gottipati Swapna, Kyong Jin Shim

Research Collection School Of Computing and Information Systems

Online industry learning platforms are widely used by organizations for employee training and upskilling. Courses or lessons offered by these platforms can be generic or specific to an enterprise application. The increased demand of new hires to learn these platforms or who are already certified in some of these courses has led universities to look at the opportunities for integrating online industry learning platforms into their curricula. Universities hope to use these platforms to aid students in their learning of concepts and theories. At the same time, these platforms can equip students with industryrecognized certifications or digital badges. This paper …


Towards Reinterpreting Neural Topic Models Via Composite Activations, Jia Peng Lim, Hady Wirawan Lauw Dec 2022

Towards Reinterpreting Neural Topic Models Via Composite Activations, Jia Peng Lim, Hady Wirawan Lauw

Research Collection School Of Computing and Information Systems

Most Neural Topic Models (NTM) use a variational auto-encoder framework producing K topics limited to the size of the encoder’s output. These topics are interpreted through the selection of the top activated words via the weights or reconstructed vector of the decoder that are directly connected to each neuron. In this paper, we present a model-free two-stage process to reinterpret NTM and derive further insights on the state of the trained model. Firstly, building on the original information from a trained NTM, we generate a pool of potential candidate “composite topics” by exploiting possible co-occurrences within the original set of …


S-Prompts Learning With Pre-Trained Transformers: An Occam's Razor For Domain Incremental Learning, Yabin Wang, Zhiwu Huang, Xiaopeng. Hong Dec 2022

S-Prompts Learning With Pre-Trained Transformers: An Occam's Razor For Domain Incremental Learning, Yabin Wang, Zhiwu Huang, Xiaopeng. Hong

Research Collection School Of Computing and Information Systems

State-of-the-art deep neural networks are still struggling to address the catastrophic forgetting problem in continual learning. In this paper, we propose one simple paradigm (named as S-Prompting) and two concrete approaches to highly reduce the forgetting degree in one of the most typical continual learning scenarios, i.e., domain increment learning (DIL). The key idea of the paradigm is to learn prompts independently across domains with pre-trained transformers, avoiding the use of exemplars that commonly appear in conventional methods. This results in a win-win game where the prompting can achieve the best for each domain. The independent prompting across domains only …


R2f: A General Retrieval, Reading And Fusion Framework For Document-Level Natural Language Inference, Hao Wang, Yixin Cao, Yangguang Li, Zhen Huang, Kun Wang, Jing Shao Dec 2022

R2f: A General Retrieval, Reading And Fusion Framework For Document-Level Natural Language Inference, Hao Wang, Yixin Cao, Yangguang Li, Zhen Huang, Kun Wang, Jing Shao

Research Collection School Of Computing and Information Systems

Document-level natural language inference (DocNLI) is a new challenging task in natural language processing, aiming at judging the entailment relationship between a pair of hypothesis and premise documents. Current datasets and baselines largely follow sentence-level settings, but fail to address the issues raised by longer documents. In this paper, we establish a general solution, named Retrieval, Reading and Fusion (R2F) framework, and a new setting, by analyzing the main challenges of DocNLI: interpretability, long-range dependency, and cross-sentence inference. The basic idea of the framework is to simplify document-level task into a set of sentence-level tasks, and improve both performance and …


Mitigating Popularity Bias In Recommendation With Unbalanced Interactions: A Gradient Perspective, Weijieying Ren, Lei Wang, Kunpeng Liu, Ruocheng Guo, Ee-Peng Lim, Yanjie Fu Dec 2022

Mitigating Popularity Bias In Recommendation With Unbalanced Interactions: A Gradient Perspective, Weijieying Ren, Lei Wang, Kunpeng Liu, Ruocheng Guo, Ee-Peng Lim, Yanjie Fu

Research Collection School Of Computing and Information Systems

Recommender systems learn from historical user-item interactions to identify preferred items for target users. These observed interactions are usually unbalanced following a long-tailed distribution. Such long-tailed data lead to popularity bias to recommend popular but not personalized items to users. We present a gradient perspective to understand two negative impacts of popularity bias in recommendation model optimization: (i) the gradient direction of popular item embeddings is closer to that of positive interactions, and (ii) the magnitude of positive gradient for popular items are much greater than that of unpopular items. To address these issues, we propose a simple yet efficient …


Interventional Training For Out-Of-Distribution Natural Language Understanding, Sicheng Yu, Jing Jiang, Hao Zhang, Yulei Niu, Qianru Sun, Lidong Bing Dec 2022

Interventional Training For Out-Of-Distribution Natural Language Understanding, Sicheng Yu, Jing Jiang, Hao Zhang, Yulei Niu, Qianru Sun, Lidong Bing

Research Collection School Of Computing and Information Systems

Out-of-distribution (OOD) settings are used to measure a model’s performance when the distribution of the test data is different from that of the training data. NLU models are known to suffer in OOD settings (Utama et al., 2020b). We study this issue from the perspective of causality, which sees confounding bias as the reason for models to learn spurious correlations. While a common solution is to perform intervention, existing methods handle only known and single confounder, but in many NLU tasks the confounders can be both unknown and multifactorial. In this paper, we propose a novel interventional training method called …


Cold Calls To Enhance Class Participation And Student Engagement, M. Thulasidas, Aldy Gunawan Dec 2022

Cold Calls To Enhance Class Participation And Student Engagement, M. Thulasidas, Aldy Gunawan

Research Collection School Of Computing and Information Systems

The question whether cold calls increase student engagement in the classroom has not been conclusively answered in the literature. This study describes the automated system to implement unbiased, randomized cold calling by posing a question, allowing all students to think first and then calling on a particular student to respond. Since we already have a measure of the level of student engagement as the self-reported classparticipation entries from the students, its correlation to cold calling is also further studied. The results show that there is a statistically significant increase in the class participation reported, and therefore in student engagement, in …


Biasfinder: Metamorphic Test Generation To Uncover Bias For Sentiment Analysis Systems, Muhammad Hilmi Asyrofi, Zhou Yang, Imam Nur Bani Yusuf, Hong Jin Kang, Thung Ferdian, David Lo Dec 2022

Biasfinder: Metamorphic Test Generation To Uncover Bias For Sentiment Analysis Systems, Muhammad Hilmi Asyrofi, Zhou Yang, Imam Nur Bani Yusuf, Hong Jin Kang, Thung Ferdian, David Lo

Research Collection School Of Computing and Information Systems

Artificial intelligence systems, such as Sentiment Analysis (SA) systems, typically learn from large amounts of data that may reflect human bias. Consequently, such systems may exhibit unintended demographic bias against specific characteristics (e.g., gender, occupation, country-of-origin, etc.). Such bias manifests in an SA system when it predicts different sentiments for similar texts that differ only in the characteristic of individuals described. To automatically uncover bias in SA systems, this paper presents BiasFinder, an approach that can discover biased predictions in SA systems via metamorphic testing. A key feature of BiasFinder is the automatic curation of suitable templates from any given …


Bank Error In Whose Favor? A Case Study Of Decentralized Finance Misgovernance, Ping Fan Ke, Ka Chung Boris Ng Dec 2022

Bank Error In Whose Favor? A Case Study Of Decentralized Finance Misgovernance, Ping Fan Ke, Ka Chung Boris Ng

Research Collection School Of Computing and Information Systems

Decentralized Finance (DeFi) emerged rapidly in recent years and provided open and transparent financial services to the public. Due to its popularity, it is not uncommon to see cybersecurity incidents in the DeFi landscape, yet the impact of such incidents is under-studied. In this paper, we examine two incidents in DeFi protocol that are mainly caused by misgovernance and mistake in the smart contract. By using the synthetic control method, we found that the incident in Alchemix did not have a significant effect on the total value locked (TVL) in the protocol, whereas the incident in Compound caused a 6.13% …


Deep Just-In-Time Defect Localization, Fangcheng Qiu, Zhipeng Gao, Xin Xia, David Lo, John Grundy, Xinyu Wang Dec 2022

Deep Just-In-Time Defect Localization, Fangcheng Qiu, Zhipeng Gao, Xin Xia, David Lo, John Grundy, Xinyu Wang

Research Collection School Of Computing and Information Systems

During software development and maintenance, defect localization is an essential part of software quality assurance. Even though different techniques have been proposed for defect localization, i.e., information retrieval (IR)-based techniques and spectrum-based techniques, they can only work after the defect has been exposed, which can be too late and costly to adapt to the newly introduced bugs in the daily development. There are also many JIT defect prediction tools that have been proposed to predict the buggy commit. But these tools do not locate the suspicious buggy positions in the buggy commit. To assist developers to detect bugs in time …


What Should Streamers Communicate In Livestream E-Commerce? The Effects Of Social Interactions On Live Streaming Performance, Danyang Song, Xi Chen, Zhiling Guo, Xiao Liu Liu, Ruijin. Jin Dec 2022

What Should Streamers Communicate In Livestream E-Commerce? The Effects Of Social Interactions On Live Streaming Performance, Danyang Song, Xi Chen, Zhiling Guo, Xiao Liu Liu, Ruijin. Jin

Research Collection School Of Computing and Information Systems

Compared with traditional e-commerce, livestreaming e-commerce is characterized by direct and intimate communication between streamers and consumers that stimulates instant social interactions. This study focuses on streamers’ three types of information exchange (i.e., product information, social conversation, and social solicitation) and examines their roles in driving both short-term and long-term livestreaming performance (i.e., sales and customer base growth). We find that the informational role of product information (nonpromotional and promotional) is beneficial not only to sales performance, but also to the growth of the customer base. We also find that social conversation has a relationship-building effect that positively impacts both …


Prompting For Multimodal Hateful Meme Classification, Rui Cao, Roy Ka-Wei Lee, Wen-Haw Chong, Jing Jiang Dec 2022

Prompting For Multimodal Hateful Meme Classification, Rui Cao, Roy Ka-Wei Lee, Wen-Haw Chong, Jing Jiang

Research Collection School Of Computing and Information Systems

Hateful meme classification is a challenging multimodal task that requires complex reasoning and contextual background knowledge. Ideally, we could leverage an explicit external knowledge base to supplement contextual and cultural information in hateful memes. However, there is no known explicit external knowledge base that could provide such hate speech contextual information. To address this gap, we propose PromptHate, a simple yet effective prompt-based model that prompts pre-trained language models (PLMs) for hateful meme classification. Specifically, we construct simple prompts and provide a few in-context examples to exploit the implicit knowledge in the pretrained RoBERTa language model for hateful meme classification. …


Dialogconv: A Lightweight Fully Convolutional Network For Multi-View Response Selection, Yongkang Liu, Shi Feng, Wei Gao, Daling Wang, Yifei Zhang Dec 2022

Dialogconv: A Lightweight Fully Convolutional Network For Multi-View Response Selection, Yongkang Liu, Shi Feng, Wei Gao, Daling Wang, Yifei Zhang

Research Collection School Of Computing and Information Systems

Current end-to-end retrieval-based dialogue systems are mainly based on Recurrent Neural Networks or Transformers with attention mechanisms. Although promising results have been achieved, these models often suffer from slow inference or huge number of parameters. In this paper, we propose a novel lightweight fully convolutional architecture, called DialogConv, for response selection. DialogConv is exclusively built on top of convolution to extract matching features of context and response. Dialogues are modeled in 3D views, where DialogConv performs convolution operations on embedding view, word view and utterance view to capture richer semantic information from multiple contextual views. On the four benchmark datasets, …


A Unified Dialogue User Simulator For Few-Shot Data Augmentation, Dazhen Wan, Zheng Zhang, Qi Zhu, Lizi Liao, Minlie Huang Dec 2022

A Unified Dialogue User Simulator For Few-Shot Data Augmentation, Dazhen Wan, Zheng Zhang, Qi Zhu, Lizi Liao, Minlie Huang

Research Collection School Of Computing and Information Systems

Pre-trained language models have shown superior performance in task-oriented dialogues. However, existing datasets are on limited scales, which cannot support large-scale pre-training. Fortunately, various data augmentation methods have been developed to augment largescale task-oriented dialogue corpora. However, they heavily rely on annotated data in the target domain, which require a tremendous amount of data collection and human labeling work. In this paper, we build a unified dialogue user simulation model by pre-training on several publicly available datasets. The model can then be tuned on a target domain with fewshot data. The experiments on a target dataset across multiple domains show …