Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 38 of 38

Full-Text Articles in Physical Sciences and Mathematics

Locally Conservative Fluxes For The Continuous Galerkin Method, Bernardo Cockburn, Jay Gopalakrishnan, Haiying Wang Jan 2007

Locally Conservative Fluxes For The Continuous Galerkin Method, Bernardo Cockburn, Jay Gopalakrishnan, Haiying Wang

Mathematics and Statistics Faculty Publications and Presentations

The standard continuous Galerkin (CG) finite element method for second order elliptic problems suffers from its inability to provide conservative flux approximations, a much needed quantity in many applications. We show how to overcome this shortcoming by using a two step postprocessing. The first step is the computation of a numerical flux trace defined on element inter- faces and is motivated by the structure of the numerical traces of discontinuous Galerkin methods. This computation is non-local in that it requires the solution of a symmetric positive definite system, but the system is well conditioned independently of mesh size, so it …


Error Analysis Of Variable Degree Mixed Methods For Elliptic Problems Via Hybridization, Bernardo Cockburn, Jay Gopalakrishnan Mar 2005

Error Analysis Of Variable Degree Mixed Methods For Elliptic Problems Via Hybridization, Bernardo Cockburn, Jay Gopalakrishnan

Mathematics and Statistics Faculty Publications and Presentations

A new approach to error analysis of hybridized mixed methods is proposed and applied to study a new hybridized variable degree Raviart-Thomas method for second order elliptic problems. The approach gives error estimates for the Lagrange multipliers without using error estimates for the other variables. Error estimates for the primal and flux variables then follow from those for the Lagrange multipliers. In contrast, traditional error analyses obtain error estimates for the flux and primal variables first and then use it to get error estimates for the Lagrange multipliers. The new approach not only gives new error estimates for the new …


Incompressible Finite Elements Via Hybridization. Part Ii: The Stokes System In Three Space Dimensions, Bernardo Cockburn, Jay Gopalakrishnan Jan 2005

Incompressible Finite Elements Via Hybridization. Part Ii: The Stokes System In Three Space Dimensions, Bernardo Cockburn, Jay Gopalakrishnan

Mathematics and Statistics Faculty Publications and Presentations

We introduce a method that gives exactly incompressible velocity approximations to Stokes ow in three space dimensions. The method is designed by extending the ideas in Part I (http://archives.pdx.edu/ds/psu/10914) of this series, where the Stokes system in two space dimensions was considered. Thus we hybridize a vorticity-velocity formulation to obtain a new mixed method coupling approximations of tangential velocity and pressure on mesh faces. Once this relatively small tangential velocity-pressure system is solved, it is possible to recover a globally divergence-free numerical approximation of the fluid velocity, an approximation of the vorticity whose tangential component is continuous across …


Incompressible Finite Elements Via Hybridization. Part I: The Stokes System In Two Space Dimensions, Bernardo Cockburn, Jay Gopalakrishnan Jan 2005

Incompressible Finite Elements Via Hybridization. Part I: The Stokes System In Two Space Dimensions, Bernardo Cockburn, Jay Gopalakrishnan

Mathematics and Statistics Faculty Publications and Presentations

In this paper, we introduce a new and efficient way to compute exactly divergence-free velocity approximations for the Stokes equations in two space dimensions. We begin by considering a mixed method that provides an exactly divergence-free approximation of the velocity and a continuous approximation of the vorticity. We then rewrite this method solely in terms of the tangential fluid velocity and the pressure on mesh edges by means of a new hybridization technique. This novel formulation bypasses the difficult task of constructing an exactly divergence-free basis for velocity approximations. Moreover, the discrete system resulting from our method has fewer degrees …


A Multilevel Discontinuous Galerkin Method, Jay Gopalakrishnan, Guido Kanschat Jan 2003

A Multilevel Discontinuous Galerkin Method, Jay Gopalakrishnan, Guido Kanschat

Mathematics and Statistics Faculty Publications and Presentations

A variable V-cycle preconditioner for an interior penalty finite element discretization for elliptic problems is presented. An analysis under a mild regularity assumption shows that the preconditioner is uniform. The interior penalty method is then combined with a discontinuous Galerkin scheme to arrive at a discretization scheme for an advection-diffusion problem, for which an error estimate is proved. A multigrid algorithm for this method is presented, and numerical experiments indicating its robustness with respect to diffusion coefficient are reported.


A Schwarz Preconditioner For A Hybridized Mixed Method, Jay Gopalakrishnan Jan 2003

A Schwarz Preconditioner For A Hybridized Mixed Method, Jay Gopalakrishnan

Mathematics and Statistics Faculty Publications and Presentations

In this paper, we provide a Schwarz preconditioner for the hybridized versions of the Raviart-Thomas and Brezzi-Douglas-Marini mixed methods. The preconditioner is for the linear equation for Lagrange multipliers arrived at by eliminating the ux as well as the primal variable. We also prove a condition number estimate for this equation when no preconditioner is used. Although preconditioners for the lowest order case of the Raviart-Thomas method have been constructed previously by exploiting its connection with a nonconforming method, our approach is different, in that we use a new variational characterization of the Lagrange multiplier equation. This allows us to …


An Efficient Method For Band Structure Calculations In 3d Photonic Crystals, David C. Dobson, Jay Gopalakrishnan, Joseph E. Pasciak Jul 2000

An Efficient Method For Band Structure Calculations In 3d Photonic Crystals, David C. Dobson, Jay Gopalakrishnan, Joseph E. Pasciak

Mathematics and Statistics Faculty Publications and Presentations

A method for computing band structures for three-dimensional photonic crystals is described. The method combines a mixed finite element discretization on a uniform grid with a fast Fourier transform preconditioner and a preconditioned subspace iteration algorithm. Numerical examples illustrating the behavior of the method are presented.


Mortar Estimates Independent Of Number Of Subdomains, Jay Gopalakrishnan Jan 2000

Mortar Estimates Independent Of Number Of Subdomains, Jay Gopalakrishnan

Mathematics and Statistics Faculty Publications and Presentations

The stability and error estimates for the mortar finite element method are well established. This work examines the dependence of constants in these estimates on shape and number of subdomains. By means of a Poincar´e inequality and some scaling arguments, these estimates are found not to deteriorate with increase in number of subdomains.