Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 38

Full-Text Articles in Physical Sciences and Mathematics

Simulating Dislocation Densities With Finite Element Analysis, Ja'nya Breeden, Dow Drake, Saurabh Puri Aug 2021

Simulating Dislocation Densities With Finite Element Analysis, Ja'nya Breeden, Dow Drake, Saurabh Puri

REU Final Reports

A one-dimensional set of nonlinear time-dependent partial differential equations developed by Acharya (2010) is studied to observe how differing levels of applied strain affect dislocation walls. The framework of this model consists of a convective and diffusive term which is used to develop a linear system of equations to test two methods of the finite element method. The linear system of partial differential equations is used to determine whether the standard or Discontinuous Galerkin method will be used. The Discontinuous Galerkin method is implemented to discretize the continuum model and the results of simulations involving zero and non-zero applied strain …


A Posteriori Error Estimates For Maxwell's Equations Using Auxiliary Subspace Techniques, Ahmed El Sakori Nov 2020

A Posteriori Error Estimates For Maxwell's Equations Using Auxiliary Subspace Techniques, Ahmed El Sakori

Dissertations and Theses

The aim of our work is to construct provably efficient and reliable error estimates of discretization error for Nédélec (edge) element discretizations of Maxwell's equations on tetrahedral meshes. Our general approach for estimating the discretization error is to compute an approximate error function by solving an associated problem in an auxiliary space that is chosen so that:

-Efficiency and reliability results for the computed error estimates can be established under reasonable and verifiable assumptions.

-The linear system used to compute the approximate error function has condition number bounded independently of the discretization parameter.

In many applications, it is some functional …


Modeling The Defects That Exists In Crystalline Structures, Kiet A. Tran Aug 2019

Modeling The Defects That Exists In Crystalline Structures, Kiet A. Tran

REU Final Reports

This paper focuses on modeling defects in crystalline materials in one-dimension using field dislocation mechanics (FDM). Predicting plastic deformation in crystalline materials on a microscopic scale allows for the understanding of the mechanical behavior of micron-sized components. Following Das et al (2013), a one dimensional reduction of the FDM model is implemented using Discontinuous Galerkin method and the results are compared with those obtained from the finite difference implementation. Test cases with different initial conditions on the position and distribution of screw dislocations are considered.


Discretization Of The Hellinger-Reissner Variational Form Of Linear Elasticity Equations, Kevin A. Sweet Aug 2019

Discretization Of The Hellinger-Reissner Variational Form Of Linear Elasticity Equations, Kevin A. Sweet

REU Final Reports

This paper addresses the derivation of the Hellinger-Reissner Variational Form from the strong form of a system of linear elasticity equations that are used in relation to geological phenomena. The problem is discretized using finite element discretization. This allowed the creation of a program that was used to run tests on various domains. The resultant displacement vectors for tested domains are shown at the end of the paper.


Trefftz Finite Elements On Curvilinear Polygons, Akash Anand, Jeffrey S. Ovall, Samuel E. Reynolds, Steffen Weisser Aug 2019

Trefftz Finite Elements On Curvilinear Polygons, Akash Anand, Jeffrey S. Ovall, Samuel E. Reynolds, Steffen Weisser

Mathematics and Statistics Faculty Publications and Presentations

We present a Trefftz-type finite element method on meshes consisting of curvilinear polygons. Local basis functions are computed using integral equation techniques that allow for the efficient and accurate evaluation of quantities needed in the formation of local stiffness matrices. To define our local finite element spaces in the presence of curved edges, we must also properly define what it means for a function defined on a curved edge to be "polynomial" of a given degree on that edge. We consider two natural choices, before settling on the one that yields the inclusion of complete polynomial spaces in our local …


Effects Of Wavelength Variation On Localized Photoemission In Triangular Gold Antennas, Christopher M. Scheffler, Robert Campbell Word, Rolf Könenkamp May 2019

Effects Of Wavelength Variation On Localized Photoemission In Triangular Gold Antennas, Christopher M. Scheffler, Robert Campbell Word, Rolf Könenkamp

Student Research Symposium

Exposing metal-dielectric structures to light can result in surface plasmon excitation and propagation along the transition interface, creating a surface plasmon polariton (SPP) response. Photoemission electron microscopy (PEEM) has been used to image nanometer scale plasmonic responses in micron-sized plasmonic devices. With PEEM, optical responses can be characterized in detail, aiding in the development of new types of plasmonic structures and their applications. In thin, triangular gold platelets SPPs can be excited and concentrated within specific regions of the material. In this regard, the platelets act as receiver antennas by converting the incident light into localized excitations in specific regions …


Spectral Discretization Errors In Filtered Subspace Iteration, Jay Gopalakrishnan, Luka Grubišić, Jeffrey S. Ovall Feb 2019

Spectral Discretization Errors In Filtered Subspace Iteration, Jay Gopalakrishnan, Luka Grubišić, Jeffrey S. Ovall

Mathematics and Statistics Faculty Publications and Presentations

We consider filtered subspace iteration for approximating a cluster of eigenvalues (and its associated eigenspace) of a (possibly unbounded) selfadjoint operator in a Hilbert space. The algorithm is motivated by a quadrature approximation of an operator-valued contour integral of the resolvent. Resolvents on infinite dimensional spaces are discretized in computable finite-dimensional spaces before the algorithm is applied. This study focuses on how such discretizations result in errors in the eigenspace approximations computed by the algorithm. The computed eigenspace is then used to obtain approximations of the eigenvalue cluster. Bounds for the Hausdorff distance between the computed and exact eigenvalue clusters …


Analysis Of Feast Spectral Approximations Using The Dpg Discretization, Jay Gopalakrishnan, Luka Grubišić, Jeffrey S. Ovall, Benjamin Quanah Parker Feb 2019

Analysis Of Feast Spectral Approximations Using The Dpg Discretization, Jay Gopalakrishnan, Luka Grubišić, Jeffrey S. Ovall, Benjamin Quanah Parker

Mathematics and Statistics Faculty Publications and Presentations

A filtered subspace iteration for computing a cluster of eigenvalues and its accompanying eigenspace, known as “FEAST”, has gained considerable attention in recent years. This work studies issues that arise when FEAST is applied to compute part of the spectrum of an unbounded partial differential operator. Specifically, when the resolvent of the partial differential operator is approximated by the discontinuous Petrov Galerkin (DPG) method, it is shown that there is no spectral pollution. The theory also provides bounds on the discretization errors in the spectral approximations. Numerical experiments for simple operators illustrate the theory and also indicate the value of …


Finite Element Method Analysis Of Whispering Gallery Acoustic Sensing, T. Le, H. Tran, Rodolfo Fernandez Rodriguez, C.J. Solano Salinas, Nima Laal, R. Bringas, J. Quispe, F. Segundo, Andres H. La Rosa Dec 2018

Finite Element Method Analysis Of Whispering Gallery Acoustic Sensing, T. Le, H. Tran, Rodolfo Fernandez Rodriguez, C.J. Solano Salinas, Nima Laal, R. Bringas, J. Quispe, F. Segundo, Andres H. La Rosa

Physics Faculty Publications and Presentations

Whispering Gallery Acoustic Sensing (WGAS) has recently been introduced as a sensing feedback mechanism to control the probe-sample separation distance in scanning probe microscopy that uses a quartz tuning fork as a sensor (QTF-SPM). WGAS exploits the SPM supporting frame as a resonant acoustic cavity to monitor the nanometer-sized amplitude of the QTF oscillations. Optimal WGAS sensitivity depends on attaining an exact match between the cavity's frequency peak response and the TF resonance frequency. However, two aspects play against this objective: i) the unpredictable variability of the TF resonance frequency (upon attaching a SPM-probe to one of its tines), …


Dispersion Analysis Of Hdg Methods, Jay Gopalakrishnan, Manuel Solano, Felipe Vargas Dec 2018

Dispersion Analysis Of Hdg Methods, Jay Gopalakrishnan, Manuel Solano, Felipe Vargas

Mathematics and Statistics Faculty Publications and Presentations

This work presents a dispersion analysis of the Hybrid Discontinuous Galerkin (HDG) method. Considering the Helmholtz system, we quantify the discrepancies between the exact and discrete wavenumbers. In particular, we obtain an analytic expansion for the wavenumber error for the lowest order Single Face HDG (SFH) method. The expansion shows that the SFH method exhibits convergence rates of the wavenumber errors comparable to that of the mixed hybrid Raviart–Thomas method. In addition, we observe the same behavior for the higher order cases in numerical experiments.


The Dpg-Star Method, Leszek Demkowicz, Jay Gopalakrishnan, Brendan Keith Nov 2018

The Dpg-Star Method, Leszek Demkowicz, Jay Gopalakrishnan, Brendan Keith

Portland Institute for Computational Science Publications

This article introduces the DPG-star (from now on, denoted DPG*) finite element method. It is a method that is in some sense dual to the discontinuous Petrov– Galerkin (DPG) method. The DPG methodology can be viewed as a means to solve an overdetermined discretization of a boundary value problem. In the same vein, the DPG* methodology is a means to solve an underdetermined discretization. These two viewpoints are developed by embedding the same operator equation into two different saddle-point problems. The analyses of the two problems have many common elements. Comparison to othermethods in the literature round out the newly …


Space-Time Discretizations Using Constrained First-Order System Least Squares (Cfosls), Kirill Voronin, Chak Shing Lee, Martin Neumüller, Paulina Sepulveda, Panayot S. Vassilevski Jun 2018

Space-Time Discretizations Using Constrained First-Order System Least Squares (Cfosls), Kirill Voronin, Chak Shing Lee, Martin Neumüller, Paulina Sepulveda, Panayot S. Vassilevski

Portland Institute for Computational Science Publications

This paper studies finite element discretizations for three types of time-dependent PDEs, namely heat equation, scalar conservation law and wave equation, which we reformulate as first order systems in a least-squares setting subject to a space-time conservation constraint (coming from the original PDE). Available piece- wise polynomial finite element spaces in (n + 1)-dimensions for functional spaces from the (n + 1)-dimensional de Rham sequence for n = 3, 4 are used for the implementation of the method. Computational results illustrating the error behavior, iteration counts and performance of block-diagonal and monolithic geometric multi- grid preconditioners are …


The Auxiliary Space Preconditioner For The De Rham Complex, Jay Gopalakrishnan, Martin Neumüller, Panayot S. Vassilevski May 2018

The Auxiliary Space Preconditioner For The De Rham Complex, Jay Gopalakrishnan, Martin Neumüller, Panayot S. Vassilevski

Portland Institute for Computational Science Publications

We generalize the construction and analysis of auxiliary space preconditioners to the n-dimensional finite element subcomplex of the de Rham complex. These preconditioners are based on a generalization of a decomposition of Sobolev space functions into a regular part and a potential. A discrete version is easily established using the tools of finite element exterior calculus. We then discuss the four-dimensional de Rham complex in detail. By identifying forms in four dimensions (4D) with simple proxies, form operations are written out in terms of familiar algebraic operations on matrices, vectors, and scalars. This provides the basis for our implementation of …


Derivation Of The Hellinger-Reissner Variational Form Of The Linear Elasticity Equations, And A Finite Element Discretization, Bram Fouts Jan 2018

Derivation Of The Hellinger-Reissner Variational Form Of The Linear Elasticity Equations, And A Finite Element Discretization, Bram Fouts

REU Final Reports

In this paper we are going to derive the linear elasticity equations in the Strong Form to the Hellinger Reissner Form. We find a suitable solution to solve our stress tensor. Then we will use finite element discretization from. We will run tests on a unit cube and multiple other shapes, which are described at the end. We view the different magnitudes of the displacement vector of each shape.


A Parallel Mesh Generator In 3d/4d, Kirill Voronin Jan 2018

A Parallel Mesh Generator In 3d/4d, Kirill Voronin

Portland Institute for Computational Science Publications

In the report a parallel mesh generator in 3d/4d is presented. The mesh generator was developed as a part of the research project on space-time discretizations for partial differential equations in the least-squares setting. The generator is capable of constructing meshes for space-time cylinders built on an arbitrary 3d space mesh in parallel. The parallel implementation was created in the form of an extension of the finite element software MFEM. The code is publicly available in the Github repository


Finite Element Method Analysis Of Resonant Cavity For Whispering Gallery Acoustic Sensing Microscopy, Thanh N.D. Le, Ha Tran, Andres H. La Rosa May 2017

Finite Element Method Analysis Of Resonant Cavity For Whispering Gallery Acoustic Sensing Microscopy, Thanh N.D. Le, Ha Tran, Andres H. La Rosa

Student Research Symposium

Whispering Gallery Acoustic Sensing (WGAS) has been studied by Department of Physics at Portland State University as a mean of controlling sample to probe distance in tuning-folk-based scanning probe microscopy (TF-SPM). WGAS uses the microscope frame as a resonance acoustic cavity. The setup shows high potential because of high-quality factor nature of acoustic cavity as well as using mechanical motions of the TF itself instead of electrical signals. However, the analytic solution of the eigenfrequencies of the current microscope frame is very complex due to the asymmetric geometry. The purpose of this study is to use finite element method to …


Some Remarks On Interpolation And Best Approximation, Randolph E. Bank, Jeffrey S. Ovall Mar 2017

Some Remarks On Interpolation And Best Approximation, Randolph E. Bank, Jeffrey S. Ovall

Mathematics and Statistics Faculty Publications and Presentations

Sufficient conditions are provided for establishing equivalence between best approximation error and projection/interpolation error in finite-dimensional vector spaces for general (semi)norms. The results are applied to several standard finite element spaces, modes of interpolation and (semi)norms, and a numerical study of the dependence on polynomial degree of constants appearing in our estimates is provided.


Breaking Spaces And Forms For The Dpg Method And Applications Including Maxwell Equations, Carsten Carstensen, Leszek Demkowicz, Jay Gopalakrishnan Aug 2016

Breaking Spaces And Forms For The Dpg Method And Applications Including Maxwell Equations, Carsten Carstensen, Leszek Demkowicz, Jay Gopalakrishnan

Mathematics and Statistics Faculty Publications and Presentations

Discontinuous Petrov Galerkin (DPG) methods are made easily implementable using `broken' test spaces, i.e., spaces of functions with no continuity constraints across mesh element interfaces. Broken spaces derivable from a standard exact sequence of first order (unbroken) Sobolev spaces are of particular interest. A characterization of interface spaces that connect the broken spaces to their unbroken counterparts is provided. Stability of certain formulations using the broken spaces can be derived from the stability of analogues that use unbroken spaces. This technique is used to provide a complete error analysis of DPG methods for Maxwell equations with perfect electric boundary conditions. …


On The Coupling Of Dpg And Bem, Thomas Führer, Norbert Heuer, Michael Karkulik Aug 2015

On The Coupling Of Dpg And Bem, Thomas Führer, Norbert Heuer, Michael Karkulik

Mathematics and Statistics Faculty Publications and Presentations

We develop and analyze strategies to couple the discontinuous Petrov-Galerkin method with optimal test functions to (i) least-squares boundary elements and (ii) various variants of standard Galerkin boundary elements. An essential feature of our method is that, despite the use of boundary integral equations, optimal test functions have to be computed only locally. We apply our findings to a standard transmission problem in full space and present numerical experiments to validate our theory.


Nonnegativity Of Exact And Numerical Solutions Of Some Chemotactic Models, Patrick De Leenheer, Jay Gopalakrishnan, Erica Zuhr Jan 2013

Nonnegativity Of Exact And Numerical Solutions Of Some Chemotactic Models, Patrick De Leenheer, Jay Gopalakrishnan, Erica Zuhr

Mathematics and Statistics Faculty Publications and Presentations

We investigate nonnegativity of exact and numerical solutions to a generalized Keller–Segel model. This model includes the so-called “minimal” Keller–Segel model, but can cover more general chemistry. We use maximum principles and invariant sets to prove that all components of the solution of the generalized model are nonnegative. We then derive numerical methods, using finite element techniques, for the generalized Keller–Segel model. Adapting the ideas in our proof of nonnegativity of exact solutions to the discrete setting, we are able to show nonnegativity of discrete solutions from the numerical methods under certain standard assumptions. One of the numerical methods is …


Mixed Finite Element Approximation Of The Vector Laplacian With Dirichlet Boundary Conditions, Douglas N. Arnold, Richard S. Falk, Jay Gopalakrishnan Jan 2012

Mixed Finite Element Approximation Of The Vector Laplacian With Dirichlet Boundary Conditions, Douglas N. Arnold, Richard S. Falk, Jay Gopalakrishnan

Mathematics and Statistics Faculty Publications and Presentations

We consider the finite element solution of the vector Laplace equation on a domain in two dimensions. For various choices of boundary conditions, it is known that a mixed finite element method, in which the rotation of the solution is introduced as a second unknown, is advantageous, and appropriate choices of mixed finite element spaces lead to a stable, optimally convergent discretization. However, the theory that leads to these conclusions does not apply to the case of Dirichlet boundary conditions, in which both components of the solution vanish on the boundary. We show, by computational example, that indeed such mixed …


Symmetric Nonconforming Mixed Finite Elements For Linear Elasticity, Jay Gopalakrishnan, Johnny Guzmán Jan 2011

Symmetric Nonconforming Mixed Finite Elements For Linear Elasticity, Jay Gopalakrishnan, Johnny Guzmán

Mathematics and Statistics Faculty Publications and Presentations

We present a family of mixed methods for linear elasticity that yield exactly symmetric, but only weakly conforming, stress approximations. The method is presented in both two and three dimensions (on triangular and tetrahedral meshes). The method is efficiently implementable by hybridization. The degrees of freedom of the Lagrange multipliers, which approximate the displacements at the faces, solve a symmetric positive-definite system. The design and analysis of this method is motivated by a new set of unisolvent degrees of freedom for symmetric polynomial matrices. These new degrees of freedom are also used to give a new simple calculation of the …


Commuting Smoothed Projectors In Weighted Norms With An Application To Axisymmetric Maxwell Equations, Jay Gopalakrishnan, Minah Oh Jan 2011

Commuting Smoothed Projectors In Weighted Norms With An Application To Axisymmetric Maxwell Equations, Jay Gopalakrishnan, Minah Oh

Mathematics and Statistics Faculty Publications and Presentations

We construct finite element projectors that can be applied to functions with low regularity. These projectors are continuous in a weighted norm arising naturally when modeling devices with axial symmetry. They have important commuting diagram properties needed for finite element analysis. As an application, we use the projectors to prove quasioptimal convergence for the edge finite element approximation of the axisymmetric time-harmonic Maxwell equations on nonsmooth domains. Supplementary numerical investigations on convergence deterioration at high wavenumbers and near Maxwell eigenvalues and are also reported.


A Second Elasticity Element Using The Matrix Bubble, Jay Gopalakrishnan, Johnny Guzmán Jan 2011

A Second Elasticity Element Using The Matrix Bubble, Jay Gopalakrishnan, Johnny Guzmán

Mathematics and Statistics Faculty Publications and Presentations

We presented a family of finite elements that use a polynomial space augmented by certain matrix bubbles in Cockburn et al. (2010) A new elasticity element made for enforcing weak stress symmetry. Math. Comput., 79, 1331–1349 . In this sequel we exhibit a second family of elements that use the same matrix bubble. This second element uses a stress space smaller than the first while maintaining the same space for rotations (which are the Lagrange multipliers corresponding to a weak symmetry constraint). The space of displacements is of one degree less than the first method. The analysis, while similar to …


A Class Of Discontinuous Petrov–Galerkin Methods. Part Iv: The Optimal Test Norm And Time-Harmonic Wave Propagation In 1d., Jeffrey Zitelli, Leszek Demkowicz, Jay Gopalakrishnan, D. Pardo, V. M. Calo Oct 2010

A Class Of Discontinuous Petrov–Galerkin Methods. Part Iv: The Optimal Test Norm And Time-Harmonic Wave Propagation In 1d., Jeffrey Zitelli, Leszek Demkowicz, Jay Gopalakrishnan, D. Pardo, V. M. Calo

Mathematics and Statistics Faculty Publications and Presentations

The phase error, or the pollution effect in the finite element solution of wave propagation problems, is a well known phenomenon that must be confronted when solving problems in the high-frequency range. This paper presents a new method with no phase errors for one-dimensional (1D) time-harmonic wave propagation problems using new ideas that hold promise for the multidimensional case. The method is constructed within the framework of the discontinuous Petrov–Galerkin (DPG) method with optimal test functions. We have previously shown that such methods select solutions that are the best possible approximations in an energy norm dual to any selected test …


A Class Of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation, Leszek Demkowicz, Jay Gopalakrishnan Jan 2010

A Class Of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation, Leszek Demkowicz, Jay Gopalakrishnan

Mathematics and Statistics Faculty Publications and Presentations

Considering a simple model transport problem, we present a new finite element method. While the new method fits in the class of discontinuous Galerkin (DG) methods, it differs from standard DG and streamline diffusion methods, in that it uses a space of discontinuous trial functions tailored for stability. The new method, unlike the older approaches, yields optimal estimates for the primal variable in both the element size h and polynomial degree p, and outperforms the standard upwind DG method.


Polynomial Extension Operators. Part Ii, Leszek Demkowicz, Jay Gopalakrishnan, Joachim Schöberl Jan 2009

Polynomial Extension Operators. Part Ii, Leszek Demkowicz, Jay Gopalakrishnan, Joachim Schöberl

Mathematics and Statistics Faculty Publications and Presentations

Consider the tangential trace of a vector polynomial on the surface of a tetrahedron. We construct an extension operator that extends such a trace function into a polynomial on the tetrahedron. This operator can be continuously extended to the trace space of H(curl ). Furthermore, it satisfies a commutativity property with an extension operator we constructed in Part I of this series. Such extensions are a fundamental ingredient of high order finite element analysis.


Unified Hybridization Of Discontinuous Galerkin, Mixed, And Continuous Galerkin Methods For Second Order Elliptic Problems, Bernardo Cockburn, Jay Gopalakrishnan, Raytcho Lazarov Jan 2009

Unified Hybridization Of Discontinuous Galerkin, Mixed, And Continuous Galerkin Methods For Second Order Elliptic Problems, Bernardo Cockburn, Jay Gopalakrishnan, Raytcho Lazarov

Mathematics and Statistics Faculty Publications and Presentations

We introduce a unifying framework for hybridization of finite element methods for second order elliptic problems. The methods fitting in the framework are a general class of mixed-dual finite element methods including hybridized mixed, continu- ous Galerkin, non-conforming and a new, wide class of hybridizable discontinuous Galerkin methods. The distinctive feature of the methods in this framework is that the only globally coupled degrees of freedom are those of an approximation of the solution defined only on the boundaries of the elements. Since the associated matrix is sparse, symmetric and positive definite, these methods can be efficiently implemented. Moreover, the …


Multigrid Convergence For Second Order Elliptic Problems With Smooth Complex Coefficients, Jay Gopalakrishnan, Joseph E. Pasciak Jan 2008

Multigrid Convergence For Second Order Elliptic Problems With Smooth Complex Coefficients, Jay Gopalakrishnan, Joseph E. Pasciak

Mathematics and Statistics Faculty Publications and Presentations

The finite element method when applied to a second order partial differential equation in divergence form can generate operators that are neither Hermitian nor definite when the coefficient function is complex valued. For such problems, under a uniqueness assumption, we prove the continuous dependence of the exact solution and its finite element approximations on data provided that the coefficients are smooth and uniformly bounded away from zero. Then we show that a multigrid algorithm converges once the coarse mesh size is smaller than some fixed number, providing an efficient solver for computing discrete approximations. Numerical experiments, while confirming the theory, …


Polynomial Extension Operators. Part I, Leszek Demkowicz, Jay Gopalakrishnan, Joachim Schöberl Jan 2008

Polynomial Extension Operators. Part I, Leszek Demkowicz, Jay Gopalakrishnan, Joachim Schöberl

Mathematics and Statistics Faculty Publications and Presentations

In this series of papers, we construct operators that extend certain given functions on the boundary of a tetrahedron into the interior of the tetrahedron, with continuity properties in appropriate Sobolev norms. These extensions are novel in that they have certain polynomial preservation properties important in the analysis of high order finite elements. This part of the series is devoted to introducing our new technique for constructing the extensions, and its application to the case of polynomial extensions from H½(∂K) into H¹(K), for any tetrahedron K.