Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Old Dominion University

Mechanical & Aerospace Engineering Faculty Publications

Discipline
Keyword
Publication Year

Articles 1 - 30 of 58

Full-Text Articles in Physical Sciences and Mathematics

Effect Of Resin Bleed Out On Compaction Behavior Of The Fiber Tow Gap Region During Automated Fiber Placement Manufacturing, Von Clyde Jamora, Virginia Rauch, Sergii G. Kravchenko, Oleksandr G. Kravchenko Jan 2024

Effect Of Resin Bleed Out On Compaction Behavior Of The Fiber Tow Gap Region During Automated Fiber Placement Manufacturing, Von Clyde Jamora, Virginia Rauch, Sergii G. Kravchenko, Oleksandr G. Kravchenko

Mechanical & Aerospace Engineering Faculty Publications

Automated fiber placement is a state-of-the-art manufacturing method which allows for precise control over layup design. However, AFP results in irregular morphology due to fiber tow deposition induced features such as tow gaps and overlaps. Factors such as the squeeze flow and resin bleed out, combined with large non-linear deformation, lead to morphological variability. To understand these complex interacting phenomena, a coupled multiphysics finite element framework was developed to simulate the compaction behavior around fiber tow gap regions, which consists of coupled chemo-rheological and flow-compaction analysis. The compaction analysis incorporated a visco-hyperelastic constitutive model with anisotropic tensorial prepreg viscosity, which …


The Feasibility Of Motion Tracking Camera System For Magnetic Suspension Wind Tunnel Tests, Hisham M. Shehata, David Cox, Mark Schoenenberger, Colin Britcher, Eli Shellabarger, Timothy Schott, Brendan Mcgovern Jan 2024

The Feasibility Of Motion Tracking Camera System For Magnetic Suspension Wind Tunnel Tests, Hisham M. Shehata, David Cox, Mark Schoenenberger, Colin Britcher, Eli Shellabarger, Timothy Schott, Brendan Mcgovern

Mechanical & Aerospace Engineering Faculty Publications

The Entry Systems Modeling (ESM) Program at NASA has actively participated in the re-development of the Magnetic Suspension Balance System (MSBS) at the six-inch subsonic wind tunnel at NASA Langley Research Center. This initiative aims to enhance the MSBS system's capabilities, enabling the testing of stingless entry vehicle models at supersonic speeds. To achieve this, control algorithms are required to ensure magnetic levitation control and stability for models during free-oscillation dynamic responses. Currently, the system relies on electromagnetic position sensors to provide real-time 3 degrees of freedom control of a rigid body. While this approach has proven successful for subsonic …


A Unit-Load Approach For Reliability-Based Design Optimization Of Linear Structures Under Random Loads And Boundary Conditions, Robert James Haupin, Gene Jean-Win Hou Aug 2023

A Unit-Load Approach For Reliability-Based Design Optimization Of Linear Structures Under Random Loads And Boundary Conditions, Robert James Haupin, Gene Jean-Win Hou

Mechanical & Aerospace Engineering Faculty Publications

The low order Taylor’s series expansion was employed in this study to estimate the reliability indices of the failure criteria for reliability-based design optimization of a linear static structure subjected to random loads and boundary conditions. By taking the advantage of the linear superposition principle, only a few analyses of the structure subjected to unit-loads are needed through the entire optimization process to produce acceptable results. Two structural examples are presented in this study to illustrate the effectiveness of the proposed approach for reliability-based design optimization: one deals with a truss structure subjected to random multiple point constraints, and the …


Gradient-Based Trade-Off Design For Engineering Applications, Lena A. Royster, Gene Hou Jun 2023

Gradient-Based Trade-Off Design For Engineering Applications, Lena A. Royster, Gene Hou

Mechanical & Aerospace Engineering Faculty Publications

The goal of the trade-off design method presented in this study is to achieve newly targeted performance requirements by modifying the current values of the design variables. The trade-off design problem is formulated in the framework of Sequential Quadratic Programming. The method is computationally efficient as it is gradient-based, which, however, requires the performance functions to be differentiable. A new equation to calculate the scale factor to control the size of the design variables is introduced in this study, which can ensure the new design achieves the targeted performance objective. Three formal approaches are developed in this study for trade-off …


Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal Jan 2023

Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal

Mechanical & Aerospace Engineering Faculty Publications

This paper expands the authors’ prior work[1], which focuses on developing a convolutional neural network (CNN) model capable of mapping time-averaged, unsteady Reynold’s-averaged Navier-Stokes (URANS) simulations to higher resolution results informed by time-averaged detached eddy simulations (DES). The authors present improvements over the prior CNN autoencoder model that result from hyperparameter optimization, increased data set augmentation through the adoption of a patch-wise training approach, and the predictions of primitive variables rather than vorticity magnitude. The training of the CNN model developed in this study uses the same URANS and DES simulations of a transonic flow around several NACA 4-digit airfoils …


Underwater Communication Acoustic Transducers: A Technology Review, Laila Shams, Tian-Bing Xu, Zhongqing Su (Ed.), Branko Glisic (Ed.), Maria Pina Limongelli (Ed.) Jan 2023

Underwater Communication Acoustic Transducers: A Technology Review, Laila Shams, Tian-Bing Xu, Zhongqing Su (Ed.), Branko Glisic (Ed.), Maria Pina Limongelli (Ed.)

Mechanical & Aerospace Engineering Faculty Publications

This paper provides a comprehensive review on transducer technologies for underwater communications. The popularly used communication transducers, such as piezoelectric acoustic transducers, electromagnetic acoustic transducers, and acousto-optic devices are reviewed in detail. The reasons that common air communication technologies are invalid die to the differences between the media of air and water are addresses. Because of the abilities to overcome challenges the complexity of marine environments, piezoelectric acoustic transducers are playing the major underwater communication roles for science, surveillance, and Naval missions. The configuration and material properties of piezoelectric transducers effects on signal output power, beamwidth, amplitude, and other properties …


Model Based Systems Engineering With A Docs-As-Code Approach For The Sealion Cubesat Project, Kevin Chiu, Sean Marquez, Sharanabasaweshwara Asundi Jan 2023

Model Based Systems Engineering With A Docs-As-Code Approach For The Sealion Cubesat Project, Kevin Chiu, Sean Marquez, Sharanabasaweshwara Asundi

Mechanical & Aerospace Engineering Faculty Publications

The SeaLion mission architecture team sought to create a model-based systems engineering approach to assist improving CubeSat success rates as well as for the SeaLion CubeSat project to guide an implementation for the flight software. This is important because university CubeSat teams are growing in number but often have untrained students as their core personnel. This was done using a document-as-code, or docs-as-code, approach. With this the team created tools for the systems architecture with the Mach 30 Modeling Language to create an architecture that is easy to learn and use even for newly admitted team members with little to …


Convolutional-Neural-Network-Based Des-Level Aerodynamic Flow Field Generation From Urans Data, John P. Romano, Oktay Baysal, Alec C. Brodeur Jan 2023

Convolutional-Neural-Network-Based Des-Level Aerodynamic Flow Field Generation From Urans Data, John P. Romano, Oktay Baysal, Alec C. Brodeur

Mechanical & Aerospace Engineering Faculty Publications

The present paper culminates several investigations into the use of convolutional neural networks (CNNs) as a post-processing step to improve the accuracy of unsteady Reynolds-averaged Navier–Stokes (URANS) simulations for subsonic flows over airfoils at low angles of attack. Time-averaged detached eddy simulation (DES)-generated flow fields serve as the target data for creating and training CNN models. CNN post-processing generates flow-field data comparable to DES resolution, but after using only URANS-level resources and properly training CNN models. This document outlines the underlying theory and progress toward the goal of improving URANS simulations by looking at flow predictions for a class of …


A Review Of Piezoelectric Footwear Energy Harvesters: Principles, Methods, And Applications, Bingqi Zhao, Feng Qian, Alexander Hatfield, Lei Zuo, Tian-Bing Xu Jan 2023

A Review Of Piezoelectric Footwear Energy Harvesters: Principles, Methods, And Applications, Bingqi Zhao, Feng Qian, Alexander Hatfield, Lei Zuo, Tian-Bing Xu

Mechanical & Aerospace Engineering Faculty Publications

Over the last couple of decades, numerous piezoelectric footwear energy harvesters (PFEHs) have been reported in the literature. This paper reviews the principles, methods, and applications of PFEH technologies. First, the popular piezoelectric materials used and their properties for PEEHs are summarized. Then, the force interaction with the ground and dynamic energy distribution on the footprint as well as accelerations are analyzed and summarized to provide the baseline, constraints, potential, and limitations for PFEH design. Furthermore, the energy flow from human walking to the usable energy by the PFEHs and the methods to improve the energy conversion efficiency are presented. …


Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian Jan 2022

Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

In lieu of an abstract, this is an excerpt from the first page.

Microfluidics has seen a remarkable growth over the past few decades, with its extensive applications in engineering, medicine, biology, chemistry, etc [...]


Trust In Human-Robot Interaction Within Healthcare Services: A Review Study, Dedra Townsend, Amirhossein Majidirad Jan 2022

Trust In Human-Robot Interaction Within Healthcare Services: A Review Study, Dedra Townsend, Amirhossein Majidirad

Mechanical & Aerospace Engineering Faculty Publications

There has always been a dilemma of the extent to which human can rely on machines in different activities of daily living. Ranging from riding on a self-driving car to having an iRobot vacuum clean the living room. However, when it comes to healthcare settings where robots are intended to work next to human, making decision gets difficult because repercussions may jeopardize people’s life. That has led scientists and engineers to take one step back and think out of the box. Having concept of trust under scrutiny, this study helps deciphering complex human-robot interaction (HRI) attributes. Screening essential constituents of …


Reducing Print Time While Minimizing Loss In Mechanical Properties In Consumer Fdm Parts, Long Le, Mitchel A. Rabsatt, Hamid Eisazadeh, Mona Torabizadeh Jan 2022

Reducing Print Time While Minimizing Loss In Mechanical Properties In Consumer Fdm Parts, Long Le, Mitchel A. Rabsatt, Hamid Eisazadeh, Mona Torabizadeh

Mechanical & Aerospace Engineering Faculty Publications

Fused deposition modeling (FDM), one of various additive manufacturing (AM) technologies, offers a useful and accessible tool for prototyping and manufacturing small volume functional parts. Polylactic acid (PLA) is among the commonly used materials for this process. This study explores the mechanical properties and print time of additively manufactured PLA with consideration to various process parameters. The objective of this study is to optimize the process parameters for the fastest print time possible while minimizing the loss in ultimate strength. Design of experiments (DOE) was employed using a split-plot design with five factors. Analysis of variance (ANOVA) was employed to …


Electroosmotic Flow Of Viscoelastic Fluid Through A Constriction Microchannel, Jianyu Ji, Shizhi Qian, Zhaohui Liu Jan 2021

Electroosmotic Flow Of Viscoelastic Fluid Through A Constriction Microchannel, Jianyu Ji, Shizhi Qian, Zhaohui Liu

Mechanical & Aerospace Engineering Faculty Publications

Electroosmotic flow (EOF) has been widely used in various biochemical microfluidic applications, many of which use viscoelastic non-Newtonian fluid. This study numerically investigates the EOF of viscoelastic fluid through a 10:1 constriction microfluidic channel connecting two reservoirs on either side. The flow is modelled by the Oldroyd-B (OB) model coupled with the Poisson–Boltzmann model. EOF of polyacrylamide (PAA) solution is studied as a function of the PAA concentration and the applied electric field. In contrast to steady EOF of Newtonian fluid, the EOF of PAA solution becomes unstable when the applied electric field (PAA concentration) exceeds a critical value for …


Tunable-Focus Liquid Lens Through Charge Injection, Shizhi Qian, Wenxiang Shi, Huai Zheng, Zhaohui Liu Jan 2020

Tunable-Focus Liquid Lens Through Charge Injection, Shizhi Qian, Wenxiang Shi, Huai Zheng, Zhaohui Liu

Mechanical & Aerospace Engineering Faculty Publications

Liquid lenses are the simplest and cheapest optical lenses, and various studies have been conducted to develop tunable-focus liquid lenses. In this study, a simple and easily implemented method for achieving tunable-focus liquid lenses was proposed and experimentally validated. In this method, charges induced by a corona discharge in the air were injected into dielectric liquid, resulting in “electropressure” at the interface between the air and the liquid. Through a 3D-printed U-tube structure, a tunable-focus liquid lens was fabricated and tested. Depending on the voltage, the focus of the liquid lens can be adjusted in large ranges (−∞ to −9 …


Electroosmotic Flow Of Viscoelastic Fluid In A Nanochannel Connecting Two Reservoirs, Lanju Mei, Shizhi Qian Nov 2019

Electroosmotic Flow Of Viscoelastic Fluid In A Nanochannel Connecting Two Reservoirs, Lanju Mei, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

Electroosmotic flow (EOF) of viscoelastic fluid with Linear Phan-Thien–Tanner (LPTT) constitutive model in a nanochannel connecting two reservoirs is numerically studied. For the first time, the influence of viscoelasticity on the EOF and the ionic conductance in the micro-nanofluidic interconnect system, with consideration of the electrical double layers (EDLs), is investigated. Regardless of the bulk salt concentration, significant enhancement of the flow rate is observed for viscoelastic fluid compared to the Newtonian fluid, due to the shear thinning effect. An increase in the ionic conductance of the nanochannel occurs for the viscoelastic fluid. The enhancement of the ionic conductance is …


Wake Vortex Pair Formation As An Analog For Dust Devil And Tornado Genesis, Robert L. Ash Jan 2019

Wake Vortex Pair Formation As An Analog For Dust Devil And Tornado Genesis, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

In 1966, meteorologist R.S. Scorer attempted to explain how large-scale oceanic tropical depressions become hurricanes or typhoons. His model was based on the idea that when these large-scale tropical depression structures begin to rotate, mostly due to Coriolis effects, an annular outer portion of that structure changes suddenly to a potential vortex segment, with the same outer radial limit as the low-pressure structure, but with an inner radius that conserves the overall system angular momentum and kinetic energy. By analogy with the "jump" instability describing sudden buckling of a vertical column, this paper shows that his conjecture merits additional consideration. …


Interface Model Of Pem Fuel Cell Membrane Steady-Dtate Behavior, Russell L. Edwards, Ayodeji Demuren Oct 2018

Interface Model Of Pem Fuel Cell Membrane Steady-Dtate Behavior, Russell L. Edwards, Ayodeji Demuren

Mechanical & Aerospace Engineering Faculty Publications

Modeling works which simulate the proton-exchange membrane fuel cell with the computational fluid dynamics approach involve the simultaneous solution of multiple, interconnected physics equations for fluid flows, heat transport, electrochemical reactions, and both protonic and electronic conduction. Modeling efforts vary by how they treat the physics within and adjacent to the membrane-electrode assembly (MEA). Certain approaches treat the MEA not as part of the computational domain, but rather an interface connecting the anode and cathode computational domains. These approaches may lack the ability to consistently model catalyst layer losses and MEA ohmic resistance. This work presents an upgraded interface formulation …


Electroosmotic Flow Of Viscoelastic Fluid In A Nanoslit, Lanju Mei, Hongna Zhang, Hongxia Meng, Shizhi Qian Mar 2018

Electroosmotic Flow Of Viscoelastic Fluid In A Nanoslit, Lanju Mei, Hongna Zhang, Hongxia Meng, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

The electroosmotic flow (EOF) of viscoelastic fluid in a long nanoslit is numerically studied to investigate the rheological property effect of Linear Phan-Thien-Tanner (LPTT) fluid on the fully developed EOF. The non-linear Poisson-Nernst-Planck equations governing the electric potential and the ionic concentration distribution within the channel are adopted to take into account the effect of the electrical double layer (EDL), including the EDL overlap. When the EDL is not overlapped, the velocity profiles for both Newtonian and viscoelastic fluids are plug-like and increase sharply near the charged wall. The velocity profile resembles that of pressure-driven flow when the EDL is …


Effect Of Curing Rate On The Microstructure And Macroscopic Properties Of Epoxy Fiberglass Composites, Ammar Patel, Olesksandr Kravchenko, Ica Manas-Zloczower Jan 2018

Effect Of Curing Rate On The Microstructure And Macroscopic Properties Of Epoxy Fiberglass Composites, Ammar Patel, Olesksandr Kravchenko, Ica Manas-Zloczower

Mechanical & Aerospace Engineering Faculty Publications

Curing rates of an epoxy amine system were varied via different curing cycles, and glass-fiber epoxy composites were prepared using the same protocol, with the aim of investigating the correlation between microstructure and composite properties. It was found that the fast curing cycle resulted in a non-homogenous network, with a larger percentage of a softer phase. Homogenized composite properties, namely storage modulus and quasi-static intra-laminar shear strength, remained unaffected by the change in resin microstructure. However, fatigue tests revealed a significant reduction in fatigue life for composites cured at fast curing rates, while composites with curing cycles that allowed a …


Dynamic Control Of Particle Separation In Deterministic Lateral Displacement Separator With Viscoelastic Fluids, Yuke Li, Hongna Zhang, Yongyao Li, Xiaobin Li, Jian Wu, Shizhi Qian, Fengchen Li Jan 2018

Dynamic Control Of Particle Separation In Deterministic Lateral Displacement Separator With Viscoelastic Fluids, Yuke Li, Hongna Zhang, Yongyao Li, Xiaobin Li, Jian Wu, Shizhi Qian, Fengchen Li

Mechanical & Aerospace Engineering Faculty Publications

We proposed an innovative method to achieve dynamic control of particle separation by employing viscoelastic fluids in deterministic lateral displacement (DLD) arrays. The effects of shear-thinning and elasticity of working fluids on the critical separation size in DLD arrays are investigated. It is observed that each effect can lead to the variation of the critical separation size by approximately 40%. Since the elasticity strength of the fluid is related to the shear rate, the dynamic control can for the first time be easily realized through tuning the flow rate in microchannels.


Characterization And Analysis Of Real-Time Capillary Convective Pcr Toward Commercialization, Xianbo Qiu, Shiyin Zhang, Lanju Mei, Di Wu, Ke Li, Shengxiang Ge, Xiangzhong Ye, Ningshao Xia, Michael G. Mauk Mar 2017

Characterization And Analysis Of Real-Time Capillary Convective Pcr Toward Commercialization, Xianbo Qiu, Shiyin Zhang, Lanju Mei, Di Wu, Ke Li, Shengxiang Ge, Xiangzhong Ye, Ningshao Xia, Michael G. Mauk

Mechanical & Aerospace Engineering Faculty Publications

Almost all the reported capillary convective polymerase chain reaction (CCPCR) systems to date are still limited to research use stemming from unresolved issues related to repeatability, reliability, convenience, and sensitivity. To move CCPCR technology forward toward commercialization, a couple of critical strategies and innovations are discussed here. First, single- and dual-end heating strategies are analyzed and compared between each other. Especially, different solutions for dual-end heating are proposed and discussed, and the heat transfer and fluid flow inside the capillary tube with an optimized dual-end heating strategy are analyzed and modeled. Second, real-time CCPCR is implemented with light-emitting diode and …


Comment On "Roles Of Bulk Viscosity On Rayleigh-Taylor Instability: Non-Equilibrium Thermodynamics Due To Spatio-Temporal Pressure Fronts" Phys. Fluids 28, 094102 (2016), Robert L. Ash Feb 2017

Comment On "Roles Of Bulk Viscosity On Rayleigh-Taylor Instability: Non-Equilibrium Thermodynamics Due To Spatio-Temporal Pressure Fronts" Phys. Fluids 28, 094102 (2016), Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

No abstract provided.


Sensitivity Analysis Method To Address User Disparities In The Analytic Hierarchy Process, Marie Ivanco, Gene Hou, Jennifer Michaeli Jan 2017

Sensitivity Analysis Method To Address User Disparities In The Analytic Hierarchy Process, Marie Ivanco, Gene Hou, Jennifer Michaeli

Mechanical & Aerospace Engineering Faculty Publications

Decision makers often face complex problems, which can seldom be addressed well without the use of structured analytical models. Mathematical models have been developed to streamline and facilitate decision making activities, and among these, the Analytic Hierarchy Process (AHP) constitutes one of the most utilized multi-criteria decision analysis methods. While AHP has been thoroughly researched and applied, the method still shows limitations in terms of addressing user profile disparities. A novel sensitivity analysis method based on local partial derivatives is presented here to address these limitations. This new methodology informs AHP users of which pairwise comparisons most impact the derived …


Preface-Jes Focus Issue On Electrolysis For Increased Renewable Energy Penetration, B. Pivovar, M. Carmo, K. Ayers, X. Zhang, J. O'Brien Oct 2016

Preface-Jes Focus Issue On Electrolysis For Increased Renewable Energy Penetration, B. Pivovar, M. Carmo, K. Ayers, X. Zhang, J. O'Brien

Mechanical & Aerospace Engineering Faculty Publications

(First paragraph) Today represents a particularly exciting time, as our planet’s energy system is undergoing major changes due to dramatically decreasing renewable energy prices and increasing societal concerns over greenhouse gas emissions, criteria pollutants (arsenic, mercury, NOx, particulate matter), and climate change. These factors are pushing society toward deep decarbonization of our energy system, perhaps the most challenging issue facing the planet today. Unfortunately, wind and solar energy, while both promising generation sources, come with intermittency challenges and have limitations in their abilities to impact industrial and transportation sector demands where fossil fuel energy carriers based on chemical bonds have …


Uv Light-Induced Aggregation Of Titania Submicron Particles, Can Zhou, Yashar Bashirzadeh, Timothy A. Bernadowsky Jr., Xiaoyu Zhang Jan 2016

Uv Light-Induced Aggregation Of Titania Submicron Particles, Can Zhou, Yashar Bashirzadeh, Timothy A. Bernadowsky Jr., Xiaoyu Zhang

Mechanical & Aerospace Engineering Faculty Publications

In this study, aggregation of TiO2 (rutile and anatase) submicron particles in deionized (DI) water under ultra-violet (UV) light irradiation was investigated. While no aggregation was observed in the dark, rutile and anatase submicron particles started aggregating upon application of UV light and ceased aggregation in about 2 and 8.4 h, respectively. It has been demonstrated that UV light directly mitigated the particle mobility of TiO2, resulting in a neutralization effect of the Zeta potential. It was also observed that rutile particles aggregated much faster than anatase particles under UV radiation, indicating that the Zeta potential of …


An Efficient Solution To The Mixed Shop Scheduling Problem Using A Modified Genetic Algorithm, V. Nguyen, H. P. Bao Jan 2016

An Efficient Solution To The Mixed Shop Scheduling Problem Using A Modified Genetic Algorithm, V. Nguyen, H. P. Bao

Mechanical & Aerospace Engineering Faculty Publications

The mixed job shop scheduling problem is one in which some jobs have fixed machine orders and other jobs may be processed in arbitrary orders. In past literature, optimal solutions have been proposed based on adaptations of classical solutions such as by Johnson, Thompson and Giffler among many others, by pseudopolynomial algorithms, by simulation, and by Genetic Algorithms (GA). GA based solutions have been proposed for flexible Job shops. This paper proposes a GA algorithm for the mixed job shop scheduling problem. The paper starts with an analysis of the characteristics of the so-called mixed shop problem. Based on those …


The Effect Of Noise On The Response Of A Vertical Cantilever Beam Energy Harvester, Michael I. Friswell, Onur Bilgen, S. Faruque Ali, Grzegorz Litak, Sondipon Adhikari May 2015

The Effect Of Noise On The Response Of A Vertical Cantilever Beam Energy Harvester, Michael I. Friswell, Onur Bilgen, S. Faruque Ali, Grzegorz Litak, Sondipon Adhikari

Mechanical & Aerospace Engineering Faculty Publications

An energy harvesting concept has been proposed comprising a piezoelectric patch on a vertical cantilever beam with a tip mass. The cantilever beam is excited in the transverse direction at its base. This device is highly nonlinear with two potential wells for large tip masses, when the beam is buckled. For the pre-buckled case considered here, the stiffness is low and hence the displacement response is large, leading to multiple solutions to harmonic excitation that are exploited in the harvesting device. To maximise the energy harvested in systems with multiple solutions the higher amplitude response should be preferred. This paper …


Nanomechanical And Morphological Characterization Of Tungsten Trioxide (Wo3) Thin Films Grown By Atomic Layer Deposition, M. A. Mamun, K. Zhang, H. Baumgart, A. A. Elmustafa Jan 2015

Nanomechanical And Morphological Characterization Of Tungsten Trioxide (Wo3) Thin Films Grown By Atomic Layer Deposition, M. A. Mamun, K. Zhang, H. Baumgart, A. A. Elmustafa

Mechanical & Aerospace Engineering Faculty Publications

This study investigates the nanomechanical properties and surface morphology of tungsten oxide WO3thin films deposited on p-type Si(100) substrates using atomic layer deposition (ALD) technology with 2000 ALD deposition cycles at a growth temperature of 300°C and annealed at different temperatures. The samples were further furnace annealed at 500, 600 and 700°C for 60 min. The influence of the deposition process on the structure and properties of the WO3 films is discussed, presented and correlated to the characteristic features of the ALD technique. The results depict significant difference in the hardness and modulus measurements between the as …


Repeated Load Relaxation Testing Of Pure Polycrystalline Nickel At Room Temperature Using Nanoindentation, D. E. Stegall, M. A. Mamun, B. Crawford, A, A. Elmustafa Jan 2014

Repeated Load Relaxation Testing Of Pure Polycrystalline Nickel At Room Temperature Using Nanoindentation, D. E. Stegall, M. A. Mamun, B. Crawford, A, A. Elmustafa

Mechanical & Aerospace Engineering Faculty Publications

We present the results of repeated relaxation tests using nanoindentation to derive the activation volume of the dislocation velocity and the ratios of the dislocation density and dislocation velocity. An experimental technique, based on classical uniaxial relaxation experiments, was developed to establish a constant strain during repeated load relaxation transients and then to calculate the stiffness of unloading, and therefore the hardness, across the transients with acceptable results. We found that the activation volume of the dislocation velocity from our nanoindentation methodology was in good agreement when compared to the same reported for uniaxial experiments. © 2014 AIP Publishing LLC.


Microfluidic Electrical Sorting Of Particles Based On Shape In A Spiral Microchannel, John Dubose, Xinyu Lu, Saurin Patel, Shizhi Qian, Sang Woo Joo Jan 2014

Microfluidic Electrical Sorting Of Particles Based On Shape In A Spiral Microchannel, John Dubose, Xinyu Lu, Saurin Patel, Shizhi Qian, Sang Woo Joo

Mechanical & Aerospace Engineering Faculty Publications

Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any …