Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 43

Full-Text Articles in Physical Sciences and Mathematics

Nanoparticles And The Environment: Biopolymer Grafted Cellulose And Screen-Printed Carbon Nanotube Composites, Dominique Henry Porcincula Dec 2023

Nanoparticles And The Environment: Biopolymer Grafted Cellulose And Screen-Printed Carbon Nanotube Composites, Dominique Henry Porcincula

Master's Theses

A host of environmental issues will define the state of the environment in the 21st century, with plastic pollution and water shortages among them. While solutions to these problems require large-scale, multipronged solutions, one way we can address them is through material innovation and the use of nanoparticles.

In the first project, we address the issue of plastic pollution by creating nanocomposites of biodegradable polymers (PLA and PCL) with cellulose nanofibrils. Here, PLA and PCL are grafted from the surface of cellulose nanofibrils via ring-opening polymerization of cyclic ester monomers. Polymer-grafted cellulose (PGC) is characterized with structural analysis, solubility …


Covalent Adaptable Networks For Wood Coatings, Jachin Boaz Clarke Jun 2023

Covalent Adaptable Networks For Wood Coatings, Jachin Boaz Clarke

Materials Engineering

Wood swells and shrinks causing problems with seasonal humidity. Applying thick coatings of reactive finishes based on cross-linked polyurethane, epoxy, or polyesters can slow moisture-vapor exchange. However, the use of thick coatings leads to cracking and crazing sooner than thin finishes. This research proposes the addition of 3.3 mol % triazabicyclodecene, a conventionally used covalent adaptable network catalyst, in a commercially available polyester-based wood coating. The self-healing of the wood coating is tested using DMA stress relaxation and compression molding. The result from DMA renders inconclusive and compression molding indicates the novel wood coating oxidizes at elevated temperatures. The wood …


Pressure Driven Desalination Utilizing Nanomaterials, Fangyou Xie Sep 2020

Pressure Driven Desalination Utilizing Nanomaterials, Fangyou Xie

Master's Theses

Nanomaterials such as graphene oxide and carbon nanotubes, have demonstrated excellent properties for membrane desalination, including decrease of maintenance, increase of flux rate, simple solution casting, and impressive chemical inertness. Here, two projects are studied to investigate nanocarbon based membrane desalination. The first project is to prepare hybrid membranes with amyloid fibrils intercalated with graphene oxide sheets. The addition of protein amyloid fibrils expands the interlayer spacing between graphene oxide nanosheets and introduces additional functional groups in the diffusion pathways, resulting in increase of flux rate and rejection rate for the organic dyes. Amyloid fibrils also provide structural assistance to …


Altering An Epoxy-Amine Thermoset's Performance Through Varying Mix Ratios, Kiersten M. Smith Jun 2020

Altering An Epoxy-Amine Thermoset's Performance Through Varying Mix Ratios, Kiersten M. Smith

Master's Theses

Epoxy resins are used in a number of different industries and therefore have application-specific material requirements, from satellites that require materials that operate in space, to paints and coatings that require high scratch resistance and mechanical durability, to medical devices, designed to be in continuous contact with biological fluids. Commercial epoxy products come with manufacturer’s information explaining the epoxy properties and recommended preparation processing conditions, which may include epoxy resin to curing agent mix ratio (Part A : Part B), cure time, and cure temperature, for example. Due to proprietary reasons, it can be difficult to understand why these values …


Implementation Of Multivariate Artificial Neural Networks Coupled With Genetic Algorithms For The Multi-Objective Property Prediction And Optimization Of Emulsion Polymers, David Chisholm Jun 2019

Implementation Of Multivariate Artificial Neural Networks Coupled With Genetic Algorithms For The Multi-Objective Property Prediction And Optimization Of Emulsion Polymers, David Chisholm

Master's Theses

Machine learning has been gaining popularity over the past few decades as computers have become more advanced. On a fundamental level, machine learning consists of the use of computerized statistical methods to analyze data and discover trends that may not have been obvious or otherwise observable previously. These trends can then be used to make predictions on new data and explore entirely new design spaces. Methods vary from simple linear regression to highly complex neural networks, but the end goal is similar. The application of these methods to material property prediction and new material discovery has been of high interest …


Rheological Investigations Of Latex-Surfactant-Associative Thickener Aqueous Systems, Bishop I. Hammack Jun 2019

Rheological Investigations Of Latex-Surfactant-Associative Thickener Aqueous Systems, Bishop I. Hammack

Master's Theses

Surfactants and Thickeners are both additives used in fully-formulated waterborne coatings to provide colloidal stability, thickening, and other functionality. The behavior of each ingredient in a coating must be understood and controlled to maintain colloidal stability as well as balance other desired properties of the liquid coating and the dry paint film. In this work, quaternary systems of Water-Latex-Thickener-Surfactant were investigated to further the understanding of their behavior in coatings. The thickener used was a well characterized, hydrophobically-modified, ethoxylated urethane (HEUR) with two C18 terminal hydrophobes and 795 average repeat units of ethylene oxide as the hydrophilic spacer. Two latexes, …


Probing The Surface Of Nanodiamonds At Stanford Synchrotron Radiation Lightsource And San Jose State University, Jocelyn Valenzuela, Jackson Earl, Cynthia Melendrez, Grace Jeanpierre, Dennis Nordlund, Abraham Wolcott Jan 2018

Probing The Surface Of Nanodiamonds At Stanford Synchrotron Radiation Lightsource And San Jose State University, Jocelyn Valenzuela, Jackson Earl, Cynthia Melendrez, Grace Jeanpierre, Dennis Nordlund, Abraham Wolcott

STAR Program Research Presentations

The nitrogen-vacancy center in diamond is a promising tool in oncology, electric field sensing, and quantum cryptography. High-pressure high-temperature (HPHT) nanodiamonds (NDs) are prime contenders for these fields because they host nitrogen-vacancy centers (NVCs) which are applicable towards cancer detection and electric and magnetic field sensing. However, to apply HPHT NDs to these fields, the surface must first be functionalized—a difficult process because of the inert nature of the surface. The project at hand focuses on surface modification of HPHT NDs with amines to allow for further bioconjugation of small molecules and plasmonic shells. This is done via liquid-phase chemistry …


Usage Of Fomblin Y To Improve Water Repellence Of Surface Coatings, Shawn Pj Kirby, Jeffrey Alston, Andrew Guenthner Aug 2017

Usage Of Fomblin Y To Improve Water Repellence Of Surface Coatings, Shawn Pj Kirby, Jeffrey Alston, Andrew Guenthner

STAR Program Research Presentations

Fluoro-Decyl POSS (FDP) has shown strong potential as a water repellant surface coating. Additionally, Fomblin is a solvent believed to have the ability to control the crystallization of POSS compounds on surfaces. Controlling the crystallization is key to improving water repelling abilities of surfaces. Thus, dip coating FDP and Fomblin onto surfaces is being investigated for water repulsion, mechanical stability, and deposition feasibility. First, temperature dependence of solubility of Fluoro-Decyl POSS in Fomblin was tested using Dynamic Light Scattering. Relative water repelling abilities of different coatings were determined by measuring contact angle of surfaces with water. Coatings with and without …


Comparative Solubility Of Poss Compounds In Fomblin Y, Shawn Pj Kirby, Jeffrey Alston, Andrew Guenthner Aug 2017

Comparative Solubility Of Poss Compounds In Fomblin Y, Shawn Pj Kirby, Jeffrey Alston, Andrew Guenthner

STAR Program Research Presentations

Fluoro-Decyl POSS (FDP) has shown strong potential as a water repellant surface coating. Additionally, Fomblin is a solvent believed to have the ability to control the crystallization of POSS compounds on surfaces. Controlling the crystallization is key to improving water repelling abilities of surfaces. Thus, dip coating FDP and Fomblin onto surfaces is being investigated for water repulsion, mechanical stability, and deposition feasibility. However, in order for this to be successful, POSS must be soluble in Fomblin. Temperature dependence of solubility of Fluoro-Hexyl, Fluoro-Octyl, Fluoro-Decyl POSS in Fomblin was tested using Dynamic Light Scattering. The values were compared, and it …


A Comparison Study Of Two Synthesis Methods For Polymer Of Intrinsic Microporosity 1 (Pim-1), Conor S. Perry Jun 2017

A Comparison Study Of Two Synthesis Methods For Polymer Of Intrinsic Microporosity 1 (Pim-1), Conor S. Perry

Materials Engineering

Polymers of Intrinsic Microporosity (PIMs) are an emerging polymeric material class for molecular sieving applications. This study focuses on PIM-1, an alternating copolymer of 5,5’,6,6’-tetrahydroxy-3,3’,3,3’-tetramethyl-1,1’-spirobisindane and tetrafluoroterephthalonitrile synthesized via nucleophilic aromatic substitution. PIM-1 been widely studied as a gas separating material and filtering membrane, but in this case, it is studied as a battery separator material. PIM-1’s microporous (pore diameters less than 2 nm) structure allows smaller favorable ions to transport while preventing larger ions and compounds from transporting. Two synthesis methods, round bottom flask synthesis and ball mill synthesis, of PIM-1 are compared to see any improved characteristics. The …


Characterization Of Aquarefined Micro/Nanoporous Lead Material, Liam S. Russell, June Y. Suh Jun 2017

Characterization Of Aquarefined Micro/Nanoporous Lead Material, Liam S. Russell, June Y. Suh

Materials Engineering

The process of aquarefining is an environmentally-friendly method for producing pure lead products that exhibit particularly low density. To observe the microstructures of these low-density forms of lead, scanning electron microscopy (SEM) was employed to examine aquarefined lead samples produced under three batches of processing conditions. Due to aquarefined lead's tendency to collapse under its own weight, careful measures were taken during transport and handling to avoid damaging the samples. Three types of microstructures were observed and correlated to changes in processing conditions: octahedron crystallites, microscales, and dendrites. Energy-dispersive x-ray spectrometry (EDS) was used to quantify the amount of oxygen …


Effect Of Surface Treatment On Liquid Adhesion Inside 3-D Structures, Madani A. Khan, Jeffrey Alston, Andrew Guenthner, Jacob Zavala Oct 2016

Effect Of Surface Treatment On Liquid Adhesion Inside 3-D Structures, Madani A. Khan, Jeffrey Alston, Andrew Guenthner, Jacob Zavala

STAR Program Research Presentations

This study explores the relationship between chemical surface treatments on the interior of glass tubes and their resistance to fluid flow. By treating the interior of the tubes with functional silanes we can decrease or increase the interaction of the tube walls with the fluid column, which translates to changes in fluid column height for a given pressure differential. Resistance to fluid flow is quantified by using the tubes as integral parts of a barometric pressure column and measuring the changes in column height as the fluid is pulled into the tube by a set pressure differential. The barometric pressure …


A Comparison Of Solvent And Water-Borne Alkyd Coatings And The History Of Voc Regulations In The United States, Molly Elise Burns Sep 2016

A Comparison Of Solvent And Water-Borne Alkyd Coatings And The History Of Voc Regulations In The United States, Molly Elise Burns

Master's Theses

A Comparison of Solvent and Water-Borne Alkyd Coatings Abstract

Conventional solvent based alkyd coatings have gone out of favor due to concerns over volatile organic compound (VOC) content. However, due to recent focus on renewable raw materials, alkyds are making a comeback in waterborne form. Water based alkyd coatings are known to have poor shelf stability and corrosion resistance, as well as other problems during the formulation process. This project focused on comparing solvent borne to two types of water-borne alkyds, water reducible alkyds and alkyds emulsions. The purpose was to understand the differences between the three types of alkyds …


Density Functional Theory Based Electrolyte Design Formulation For Lithium-Sulfur Batteries, Cynthia Ly, Carolyn Sturges, Vijay Murugesan Aug 2016

Density Functional Theory Based Electrolyte Design Formulation For Lithium-Sulfur Batteries, Cynthia Ly, Carolyn Sturges, Vijay Murugesan

STAR Program Research Presentations

Lithium-ion (Li-ion) batteries are commonly used in portable electronics such as cellphones and laptops. Most Li-ion batteries operate on intercalation principle with typical theoretical specific energy of 400-600 (Wh/Kg). There is great scientific interest in lithium-sulfur (Li-S) batteries as a possible successor of traditional Li-ion batteries because Li-S holds the potential of being a very powerful (1550 Wh/kg theoretical specific energy) yet very cost-efficient battery (due the abundance and inexpensiveness of sulfur). However, one major problem in Li-S battery research is the polysulfide “shuttle phenomenon”, which is the shuttling of polysulfide species due to the dissolution of sulfide from the …


Calculating The Energy Barriers Required To Join Metal-Organic Framework Synthesis Intermediates With Non-Equilibrium Molecular Simulation, Marcus A. Tubbs, David Cantu, Roger Rousseau, Vassiliki-Alexandra Glezakou Aug 2016

Calculating The Energy Barriers Required To Join Metal-Organic Framework Synthesis Intermediates With Non-Equilibrium Molecular Simulation, Marcus A. Tubbs, David Cantu, Roger Rousseau, Vassiliki-Alexandra Glezakou

STAR Program Research Presentations

Metal organic frameworks are synthetic porous materials with great capacity for adsorption of carbon dioxide and methane. They chemically appear as a chain-link fence with nodes of metal connected by organic linkers. The pores between the nodes define the characteristics of the material, allowing gas particles of specific size to pass through while blocking larger particulates. While there has been success in synthesizing small amounts of metal organic frameworks, the mechanistic details behind their assembly remain unknown. Understanding the synthesis mechanism is necessary to understand the kinetics involved and be able to produce this useful material on an industrial scale. …


Using In Situ Liquid Single Photon Ionization Mass Spectrometry (Spi-Ms) To Probe Lithium Polysulfide Electrolyte In Motion, Aala M. Al Hasan, Jiachao Yu, Juan Yao, Vijayakumar Murugesan, Manjula Nandasiri, Xiao-Ying Yu Aug 2016

Using In Situ Liquid Single Photon Ionization Mass Spectrometry (Spi-Ms) To Probe Lithium Polysulfide Electrolyte In Motion, Aala M. Al Hasan, Jiachao Yu, Juan Yao, Vijayakumar Murugesan, Manjula Nandasiri, Xiao-Ying Yu

STAR Program Research Presentations

The solid-liquid (s-l) interface is the most common interface encountered in electrochemical systems. The s-l interface has wide applications in energy storage, catalysis, and material sciences. In situ studies of chemical reactions taking place on the s-l interfaces can further our understanding of electron transfer and link to real-world device functions under challenging conditions. Direct probing of the solid electrode and liquid electrolyte interface has been realized using a vacuum compatible electrochemical microfluidic reactor, system for analysis at the liquid vacuum interface (SALVI) with time-of-flight secondary ion mass spectrometry (ToF-SIMS). Most recently, the electrochemical version of SALVI was integrated to …


Metals Additive Manufacturing Powder Aging Characterization, Thomas Russell Lovejoy, Nicholas Karl Muetterties, David Takeo Otsu Jun 2016

Metals Additive Manufacturing Powder Aging Characterization, Thomas Russell Lovejoy, Nicholas Karl Muetterties, David Takeo Otsu

Mechanical Engineering

The metallic additive manufacturing process known as selective laser melting requires highly spherical, normally distributed powder with diameters in the range of 10 to 50 microns. Previous observations have shown a degradation in powder quality over time, resulting in unwanted characteristics in the final printed parts. 21-6-9 stainless steel powder was used to fabricate test parts, with leftover powder recycled back into the machine. Powder samples and test specimens were characterized to observe changes across build cycles. Few changes were observed in the physical and mechanical properties of the specimens, however, there were indications of chemical changes across cycles. Potential …


Development And Characterization Of Reagent Pencils For Microfluidic Paper Based Analytical Devices, Cheyenne H. Liu Jun 2016

Development And Characterization Of Reagent Pencils For Microfluidic Paper Based Analytical Devices, Cheyenne H. Liu

Master's Theses

Microfluidic paper based analytical devices (microPADs) are a novel platform for point of care (POC) diagnostics. Limitations of reagent shelf life have been overcome with the introduction of reagent pencils as a method for solid-based reagent deposition. While useful, little work has been reported on the characterization and optimization of reagent pencils. Herein, an investigation on reagent pencil composition and efficiency is conducted via colorimetric release profile tests utilizing an erioglaucine disodium salt that yields a quantifiable blue colored product in the presence of water. Within this work, an investigation on the molecular weight dependence, polymer chain end functionality, and …


Toward High Performance Nanocarbon Fibers, Michaela R. Pfau Mar 2016

Toward High Performance Nanocarbon Fibers, Michaela R. Pfau

Master's Theses

High performance carbon fibers (CFs) have been a commercially available since their commercial boom in the 1970s, and are generally produced via carbonization of poly (acrylonitrile) (PAN). More recently, carbon nanomaterials like graphene and carbon nanotubes (CNTs) have been discovered and have shown excellent mechanical, thermal, and electrical properties due to their sp2 carbon repeating structure. Graphene and CNTs can both be organized into macroscopic fibers using a number of different techniques, resulting in fibers with promising mechanical performance that can be readily multifunctionalized. In some cases, the two materials have been combined, and the resulting hybrid fibers have …


Probing The Transport Properties Of Chemically-Doped Single-Walled Carbon Nantotube Polymer Composites, Tammy Pheuphong, Tamara El-Hayek, Jeffrey Blackburn, Andrew Ferguson Jan 2016

Probing The Transport Properties Of Chemically-Doped Single-Walled Carbon Nantotube Polymer Composites, Tammy Pheuphong, Tamara El-Hayek, Jeffrey Blackburn, Andrew Ferguson

STAR Program Research Presentations

Thermoelectric (TE) materials are used to convert waste heat into electrical power. Semiconducting single-walled carbon nanotubes (s-SWCNT) have great potential to be used in thermoelectric devices, either on their own or in composites with conducting polymers. Certain polymers can selectively extract s-SWCNT from raw carbon nanotube soot (containing impurities such as metallic SWCNT, amorphous carbon, metal catalysts particles), but most of these polymers (e.g. polyfluorenes) are electrical insulators, rendering them inefficient in TE nanocomposites. On the other hand, conducting polymers, such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), have been used in efficient TE nanocomposites, but have never been rationally designed with …


Effects Of Surface Coatings On Crystalization Of Calcium Sulfate, Shawn Pj Kirby, Josiah Reams, Kamran Ghiassi, Jeffrey Alston Jan 2016

Effects Of Surface Coatings On Crystalization Of Calcium Sulfate, Shawn Pj Kirby, Josiah Reams, Kamran Ghiassi, Jeffrey Alston

STAR Program Research Presentations

Deposits from hard water can be problematic as they can form scaling on boilers and cooling towers. Scaling can reduce thermal efficiency. Coatings can be used to prevent mineral fouling by changing the surface energy. Some deposits have inverse solubility; such as calcium sulfate. This means that as temperature rises, they become less soluble and can crystallize out of solution. Calcium sulfate is often found in hard water. Crystalization tests were done to determine how coatings such as various POSS (Polyhedral oligomeric silsesquioxane) compounds acted as nucleating surfaces for calcium sulfate. POSS compounds were tested in particular because they …


Calculating The Energy Barriers Required To Join Metal-Organic Framework Synthesis Intermediates With Non-Equilibrium Molecular Simulation, Marcus A. Tubbs, David Cantu, Roger Rousseau, Vassiliki-Alexandra Glezakou Aug 2015

Calculating The Energy Barriers Required To Join Metal-Organic Framework Synthesis Intermediates With Non-Equilibrium Molecular Simulation, Marcus A. Tubbs, David Cantu, Roger Rousseau, Vassiliki-Alexandra Glezakou

STAR Program Research Presentations

Metal organic frameworks (MOFs) are synthetic materials made of a cage-like lattice of metal nodes connected by organic linkers. The pores between the nodes define the characteristics of the material. A MOF, MIL-101, has shown great capacity in the adsorption of carbon dioxide and methane, as well as in hydrogenation catalysis with palladium. While there has been success in synthesizing MIL-101 and other MOFs, the mechanistic details behind their assembly remain unknown. Understanding the synthesis mechanism is necessary to understand the kinetics involved and be able to produce this useful material on an industrial scale. Using MIL-101 as a prototypical …


Effect Of Surface Omniphobicity On Drying By Forced Convection, Madani A. Khan, Jeffrey Alston, Andrew Guenthner Aug 2015

Effect Of Surface Omniphobicity On Drying By Forced Convection, Madani A. Khan, Jeffrey Alston, Andrew Guenthner

STAR Program Research Presentations

Low energy surfaces can strongly repel both oil and water. Recently these surfaces have been fabricated on various substrates including fabric, aluminum, stainless steel and many other materials. In this experiment we explore the use of low energy surface deposition on aluminum alloy, stainless steel and silicon substrates, to enhance the drying rate of liquids removed from the surface by forced convection. We control surface roughness by substrate abrasion and by the growth of Al2O3 nanograss to enhance liquid repellence by use of a hierarchical texture. Liquid repellence of the substrates is measured by contact angles of …


Effect Of Surfactant Architecture On Conformational Transitions Of Conjugated Polyelectrolytes, Greg A. Braggin Jun 2015

Effect Of Surfactant Architecture On Conformational Transitions Of Conjugated Polyelectrolytes, Greg A. Braggin

Master's Theses

Water soluble conjugated polyelectrolytes (CPEs), which fall under the category of conductive polymers, possess numerous advantages over other conductive materials for the fabrication of electronic devices. Namely, the processing of water soluble conjugated polyelectrolytes into thin film electronic devices is much less costly as compared to the processing of inorganic materials. Moreover, the handling of conjugated polyelectrolytes can be performed in a much more environmentally friendly manner than in the processing of other conjugated polymers because conjugated polyelectrolytes are water soluble, whereas other polymers will only dissolve in toxic organic solvents. The processing of electronic devices containing inorganic constituents such …


Fabrication And Characterization Of A Vertically-Oriented Graphene Supercapacitor, Patrick R. Rice, Jiaxin Cui, Ahmad Badr, Michael M. Oye, Jessica E. Koehne, Meyya Meyyappan Jan 2015

Fabrication And Characterization Of A Vertically-Oriented Graphene Supercapacitor, Patrick R. Rice, Jiaxin Cui, Ahmad Badr, Michael M. Oye, Jessica E. Koehne, Meyya Meyyappan

STAR Program Research Presentations

Supercapacitors, otherwise known as electrical double layer capacitors, are a new type of electrochemical capacitor whose storage capacity is governed by two principals: the electrostatic storage achieved by a separation of charge at the interface of an electrode with an electrolytic solution, and pseudocapacitance, whose electrical energy is achieved by faradaic redox reactions. This project reports the synthesis and characterization of vertically-oriented graphene grown on copper substrates as electrodes in electric double-layer capacitor. Graphene is a two-dimensional pure carbon material with a high potential for energy storage. With vertically-grown graphene, an exponentially-larger surface area is made available, allowing an increase …


Determining Force Field Parameters Involved With Metal Organic Framework Synthesis, Marcus A. Tubbs, David Cantu, Vanda Glezakou Aug 2014

Determining Force Field Parameters Involved With Metal Organic Framework Synthesis, Marcus A. Tubbs, David Cantu, Vanda Glezakou

STAR Program Research Presentations

Metal organic frameworks (MOFs) are synthetic materials made of a cage-like lattice with consistently spaced pores. The size of these pores are the defining characteristic of a MOF, as it determines which gases are allowed to pass through and which can be trapped. Examples of their potential use can be greenhouse gas sequestration or storage. Currently, the synthesis of MOFs is based on trial-and-error, and the successes are not well understood. We are working on building the theoretical framework that describes how a particular MOF, MIL-101, comes together during synthesis. Our initial approach was to simulate the possible reactions with …


An Investigation Of Poly(N-Isopropylacrylamide) For Applications With Microfluidic Paper-Based Analytical Devices, Haydn Thomas Mitchell Jun 2014

An Investigation Of Poly(N-Isopropylacrylamide) For Applications With Microfluidic Paper-Based Analytical Devices, Haydn Thomas Mitchell

Master's Theses

N,N′-methylenebisacrylamide-crosslinked poly(N-isopropylacrylamide), also known as P(NIPAM), was developed as a fluid delivery system for use with microfluidic paper-based analytical devices (microPADs). MicroPADs are postage-stamp-sized devices made out of paper that can be used as platforms for low-cost, simple-to-use point-of-care diagnostic assays. P(NIPAM) is a thermally responsive polymer that absorbs aqueous solutions at room temperature and will expel the solutions to microPADs when heated. The fluid delivery characteristics of P(NIPAM) were assessed, and P(NIPAM) was able to deliver multiple solutions to microPADs in specific sequences or simultaneously in a laminar-flow configuration. P(NIPAM) was then shown to be suitable …


Improving Hybrid Solar Cells: Overcoming Charge Extraction Issues In Bulk Mixtures Of Polythiophenes And Zinc Oxide Nanostructures, Grant T. Olson Jun 2014

Improving Hybrid Solar Cells: Overcoming Charge Extraction Issues In Bulk Mixtures Of Polythiophenes And Zinc Oxide Nanostructures, Grant T. Olson

Master's Theses

Organic photovoltaics (OPVs) have received a great deal of focus in recent years as a possible alternative to expensive silicon based solar technology. Current challenges for organic photovoltaics are centered around improving their lifetimes and increasing their power conversion efficiencies. One approach to improving the lifetime of such devices has been the inclusion of inorganic metal oxide layers, but interaction between the metal oxides and common conjugated polymers is not favorable. Here we present two methods by which the interactions between polythiophenes and nanostructured ZnO can be made to be more favorable. Using the first method, direct side on attachment …


Water Capacity Of Tuffoam, Kristina Fuller Jan 2014

Water Capacity Of Tuffoam, Kristina Fuller

STAR Program Research Presentations

TufFoam is a Sandia-developed, closed cell polyurethane foam designed for insulation and impact force dispersion. Unlike similar commercially available foams, TufFoam does not require the carcinogenic compound toluene diisocyanate in the production process. Since properties of foams can change with moisture content, this study examines the capacity of TufFoam to absorb water. Samples of TufFoam were created in two different thicknesses, at three different densities, and with two different exteriors and were weighed to the microgram. Weights were tracked from ambient conditions until the disks had finished drying in ovens and then while being moistened in airtight canisters held at …


Morphology And Conformation Of Polythiophene Derivatives In Anisotropic Core-Shell Nanocomposites And Solution, Neil Redeker Dec 2013

Morphology And Conformation Of Polythiophene Derivatives In Anisotropic Core-Shell Nanocomposites And Solution, Neil Redeker

Master's Theses

Conjugated semiconducting polymers have garnered substantial interest in recent years due to the potential for use in various applications, particularly in the field of electronic devices such as photovoltaic cells and light emitting diodes. Conjugated polymers offer numerous advantages in these applications, including low cost and high flexibility, but electronic devices based on these materials are currently limited by poor performance. Because of these limitations, increased focus has been placed on improving conjugated polymers for use in commercially viable products. Here, a novel core shell hybrid nanocomposite based on anisotropic zinc oxide nanowires and a side-chain functionalized polythiophene is reported. …