Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

High pressure

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 42

Full-Text Articles in Physical Sciences and Mathematics

Revealing The Core Dynamics Of Vesta: Insights From Experimental Investigations Of Electrical Resistivity And Thermal Conductivity, Oluwasanmi A. Orole Mr Nov 2023

Revealing The Core Dynamics Of Vesta: Insights From Experimental Investigations Of Electrical Resistivity And Thermal Conductivity, Oluwasanmi A. Orole Mr

Electronic Thesis and Dissertation Repository

Insights from high pressure and temperature experiments involving in-situ measurements of the electrical resistivity of Fe-5wt%Ni at temperatures of up to 2000 K, under pressures of 2-5 GPa in a 1000-ton cubic-anvil press have been used to reveal Vesta’s core dynamics. The Wiedemann–Franz law was used to calculate the thermal conductivity from the measured electrical resistivity data. Comparing the findings of this study with prior investigations on both pure Fe and Fe-10wt%Ni indicates that an increase in Ni ranging from 0-10wt% has negligible effect on the electrical resistivity of Fe alloys. By comparing the range of estimated heat flux through …


Exploration Of H2o Ice At Extreme Conditions, Zachary M. Grande May 2023

Exploration Of H2o Ice At Extreme Conditions, Zachary M. Grande

UNLV Theses, Dissertations, Professional Papers, and Capstones

Static compression experiments on water ice are needed for precise characterization and discovery of new ice phases near room temperature. Here I present my efforts and the developments that have been made to reduce detrimental effects found in high-pressure experiments in order to acquire precise measurements on ice approaching 3 Mbar. Several key observations are made, relating to the phase transition of ice-VII to X, an intermediate phase I have named ice-VIIt and evidence of a post ice X phase. Some of these experiments have been replicated using D2O ice as well, in order to gain insight into nuclear quantum …


Elevation-Distributed Multistage Reverse Osmosis Desalination With Seawater Pumped Storage, Hani E. Elsayed-Ali Jan 2023

Elevation-Distributed Multistage Reverse Osmosis Desalination With Seawater Pumped Storage, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

A seawater reverse osmosis (RO) plant layout based on multistage RO with stages located at different elevations above sea level is described. The plant uses the weight of a seawater column from pumped storage as head pressure for RO (gravity-driven multistage RO) or to supplement high-pressure pumps used in RO (gravity-assisted multistage RO). The use of gravitational force reduces the specific energy for RO compared to using high-pressure pumps. By locating the RO stages at different elevations based on demand sites, the total specific energy consumption for RO and permeate transport to different elevations above sea level is reduced from …


Deformation Of Antigorite + Olivine Aggregates: Implications For Mantle Wedge Dynamics, Roselyn K. Hurlow Jul 2022

Deformation Of Antigorite + Olivine Aggregates: Implications For Mantle Wedge Dynamics, Roselyn K. Hurlow

Earth and Planetary Sciences ETDs

Aggregates with varying volume proportions of antigorite and olivine were deformed at mantle wedge conditions of high-pressure (P) (2.5-7.6 GPa), -temperature (T) (675 K), and strain rates from ~1.0*10-5 to ~1.0*10-4 s-1 using the deformation-DIA (D-DIA) to investigate deformation mechanisms and stress/strain partitioning. Macroscopic strain, lattice strain, and texture were measured in situ using synchrotron x-ray diffraction and radiography and were modeled for olivine using Elasto-Viscoplastic Self-Consistent (EVPSC) simulations. These modeled results are coupled with microstructure images and electron backscatter diffraction (EBSD) measurements results to determine stress and deformation mechanisms. Previous to this study, investigations have been …


Structural Tuning Of Two-Dimensional Perovskites At High Pressure, Lauren A. Diloreto Aug 2021

Structural Tuning Of Two-Dimensional Perovskites At High Pressure, Lauren A. Diloreto

Undergraduate Student Research Internships Conference

Two-Dimensional Perovskites are semiconductors and are of interest to researchers as the class of materials show great promise for innovating improvements to solar cells. The purpose of this experiment is to determine if a metastable change will occur in the materials: DPDAPbI4 and CMA2PbI4 upon compression to approximately 9 GPa. The experiment was conducted using diamond anvil cells (DAC) to apply static pressure to the materials. The pressure of the sample was then measured using ruby fluorescence. Then, FTIR or Raman spectroscopy acquisitions were obtained at various pressures. Subsequently, the data suggests that a metastable change did not occur. Additionally, …


Intercalation And High Pressure Studies Of Black Phosphorous - Pathways To Novel Materials And Physics., Manthila Chathurange Rajapakse Aug 2021

Intercalation And High Pressure Studies Of Black Phosphorous - Pathways To Novel Materials And Physics., Manthila Chathurange Rajapakse

Electronic Theses and Dissertations

Discovery of graphene in 2004 initiated a new trend of materials known as two-dimensional (2D) materials which have exciting surface properties and anisotropies than their bulk counterparts. Phosphorene, which is the layered version of black phosphorous (BP) is one of the top 2D materials in terms of research interests and applications of the present day. Moving a step further, our interest is to understand the possibilities for structural modifications of phosphorene, by means of stimuli such as intercalation and high-pressure. It has been predicted by theoretical studies that these stimuli may lead to the formation of new structures and phases …


High-Pressure Studies Of Flexible Metal-Organic Frameworks And Their Performance For Co2 Adsorption Using Infrared Spectroscopy, Boqing Li Feb 2021

High-Pressure Studies Of Flexible Metal-Organic Frameworks And Their Performance For Co2 Adsorption Using Infrared Spectroscopy, Boqing Li

Electronic Thesis and Dissertation Repository

Metal-organic frameworks (MOFs) are crystalline porous materials comprising metal ions/clusters and organic linkers. MOFs feature very large surface area and broad tunability, which distinguish them from traditional CO2 adsorbents. High external pressure can significantly modify the framework structures and CO2 adsorption properties of MOFs. MIL-53(Al) and NH2-MIL-53(Al) exhibit excellent CO2 affinity by forming hydrogen bonds between bridging OH groups and adsorbed CO2. We used in situ infrared spectroscopy to investigate the high-pressure performance of their framework structures and CO2 adsorption capacities. Diamond anvil cell was employed to apply high pressures in gigapascal …


Phenotypic Switching Of Bacterial Cells In Extreme Environments, Sudip Nepal Jul 2020

Phenotypic Switching Of Bacterial Cells In Extreme Environments, Sudip Nepal

Graduate Theses and Dissertations

A large number of terrestrial microbial lives thrive in extremes of environmental conditions, including extremes of pressure, temperature, salinity, pH, and a combination of them. For example, all the marine biomass thrive at high hydrostatic pressure depending on depth. The temperature in the ocean can be very high near the hydrothermal vents and salinity and pH depends on the composition of salt in the surrounding areas. On the surface, hot springs, lakes and geysers provide high temperature conditions, while many places are permafrost regions with subzero temperatures. There is an emerging body of work on the viability, genomics, and metagenomics …


Revealing The Hidden Hyperfine Interactions In Ε-Iron, Dimitrios Bessas, Ilya Sergueev, Konstantin Glazyrin, Cornelius Strohm, Ilya Kupenko, Daniel G. Merkel, Gary J. Long, Fernande Grandjean, Aleksandr I. Chumakov, Rudolf Ruffer Jan 2020

Revealing The Hidden Hyperfine Interactions In Ε-Iron, Dimitrios Bessas, Ilya Sergueev, Konstantin Glazyrin, Cornelius Strohm, Ilya Kupenko, Daniel G. Merkel, Gary J. Long, Fernande Grandjean, Aleksandr I. Chumakov, Rudolf Ruffer

Chemistry Faculty Research & Creative Works

Herein, evidence for the long-sought finite hyperfine interaction in the high-pressure hexagonal close-packed ε-iron is gained through synchrotron radiation perturbed angular correlation spectroscopy. This method yields an energy splitting of 3.5(5)neV between the mIe= ± 1/2 and mIe = ± 3/2 nuclear sublevels of the iron-57 14.412-keV nuclear excited state at 30(1)GPa and room temperature. This energy splitting is related to a nuclear quadrupole hyperfine interaction with an electric field gradient of eq=1.2(2) x 1016V/cm2. However, there is still a possibility that the splitting of the iron-57 nuclear levels is related …


First-Principles Simulations Of Materials Under Extreme Conditions, Kien Nguyen Cong Nov 2019

First-Principles Simulations Of Materials Under Extreme Conditions, Kien Nguyen Cong

USF Tampa Graduate Theses and Dissertations

The investigation of materials at extreme conditions of high pressure and temperature (high-PT), has been one of the greatest scientific endeavors in condensed mater physics, chemistry, astronomy, planetary, and material sciences. Being subjected to high-PT conditions, materials exhibit dramatic changes in both atomic and electronic structure resulting in an emergence of exceptionally interesting phenomena including structural and electronic phase transitions, chemical reactions, and formation of novel compounds with never-previously observed physical and chemical properties. Although new exciting experimental developments in static and dynamic compression combined with new diagnostics/characterization methods allow to uncover new processes and phenomena at high P-T conditions, …


Investigations Of The High Pressure Effects On Structural Properties And Co2 Adsorption Performance Of Mofs Using Vibrational Spectroscopy, Shan Jiang Nov 2019

Investigations Of The High Pressure Effects On Structural Properties And Co2 Adsorption Performance Of Mofs Using Vibrational Spectroscopy, Shan Jiang

Electronic Thesis and Dissertation Repository

The pre- and post-combustion carbon dioxide capture has drawn much attention in the past few decades owing to the increasing concentration of CO2 in the atmosphere. Among all the potential solid adsorbents for CO2 capture, metal-organic frameworks (MOFs) are a promising class of materials due to their large surface areas, high tunability and their high selectivity for gas adsorption applications. It has been widely demonstrated that the application of high external pressure in gigapascal level can substantially tune the structure, pore size and opening of porous material. Consequently, the structural, as well as gas adsorption properties of these …


High-Pressure High-Temperature Exploration Of Phase Boundaries Using Raman Spectroscopy, Jasmine Kashmir Hinton May 2019

High-Pressure High-Temperature Exploration Of Phase Boundaries Using Raman Spectroscopy, Jasmine Kashmir Hinton

UNLV Theses, Dissertations, Professional Papers, and Capstones

Metastability of states can provide interesting properties that may not be readily accessible in a material’s ground state. Many materials show high levels of polymorphism, indicating a rich energy landscape and a potential for metastable states. Melt crystallization techniques provide a potential route to these states. We use a resistively heated diamond anvil cell (DAC) with fine control of a system’s pressure and temperature to explore these systems. Raman spectroscopy is used to track subtle structural changes across phase boundaries. Organic systems, such as glycine and aspirin, were our initial interest due to their high polymorphism and reported low melting …


Specific Heat, Magnetic Susceptibility, And The Effect Of Pressure On Structural Properties And Valence Of Eumn2si2, Euco2si2, And Eu5in2sb6, Brian Edward Light May 2019

Specific Heat, Magnetic Susceptibility, And The Effect Of Pressure On Structural Properties And Valence Of Eumn2si2, Euco2si2, And Eu5in2sb6, Brian Edward Light

UNLV Theses, Dissertations, Professional Papers, and Capstones

Many intermetallic solids containing elements from the rare earth series show interesting and unusual behavior associated with 4f electrons. This behavior includes unusual magnetic order, strongly correlated electrons, intermediate valence, heavy fermions, the Kondo effect, superconductivity, and non-Fermi liquid (NFL) to name a few. When long range magnetic order is suppressed to T = 0 K by the application of an external tuning parameter such as pressure, magnetic field, or chemical doping, a quantum critical point (QCP) appears in which strong quantum fluctuations give rise to many of the mentioned unusual properties.

Most of the past studies on unusual 4f …


Fluorine Chemistry At Extreme Conditions: Possible Synthesis Of Hgf4, Michael G. Pravica, Sarah Schyck, Blake Harris, Petrika Cifligu, Eunja Kim, Brant Billinghurst Feb 2019

Fluorine Chemistry At Extreme Conditions: Possible Synthesis Of Hgf4, Michael G. Pravica, Sarah Schyck, Blake Harris, Petrika Cifligu, Eunja Kim, Brant Billinghurst

Physics & Astronomy Faculty Research

By irradiating a pressurized mixture of a fluorine-bearing compound (XeF2XeF2) and HgF2HgF2 with synchrotron hard x-rays ... (See full text for complete abstract)


Electrical Resistivity Of Nickel, Iron And Iron-Silicon Alloy Melts At High Pressure With Implications For The Thermal Conductivity Of The Earth’S Core, Reynold E. Silber Dec 2018

Electrical Resistivity Of Nickel, Iron And Iron-Silicon Alloy Melts At High Pressure With Implications For The Thermal Conductivity Of The Earth’S Core, Reynold E. Silber

Electronic Thesis and Dissertation Repository

The Earth’s liquid outer core (OC) is composed of Fe alloyed with up to 10% Ni and a small fraction of light elements. However, the effect of light elements such as Si on the transport properties of liquid Fe-alloy in Earth’s OC is not clear. Thermal conductivity (κ) and related electrical resistivity (ρ) are the least constrained parameters in OC. Therefore, the characterization of transport properties of Ni, Fe and Fe-Si at high pressure has important geophysical implications for the Earth’s core. The ρ of solid and liquid Ni, Fe and Fe 4%Si was measured at …


Pressure Tuning Of Energy Storage Materials Probed By In-Situ Vibrational Spectroscopy And Synchrotron Radiation, Pan Wang Oct 2018

Pressure Tuning Of Energy Storage Materials Probed By In-Situ Vibrational Spectroscopy And Synchrotron Radiation, Pan Wang

Electronic Thesis and Dissertation Repository

Clean and renewable energy has drawn much attention recently due to the increasing demand for more energy and environmental issues. New materials have been developed and the improved performance of such materials have been achieved in the past decades. It has been proved that application of external high pressure can significantly tune the structure of materials. Consequently, the properties of the materials could also be modified. Therefore, in this thesis, we focused on the high-pressure studies of two classes of energy storage materials, hydrogen storage materials and solar cell materials. Ammonia borane (AB) has been extensively investigated as an excellent …


Kinetic Study Of Free Radical-Radical Reactions Of Combustion Importance At Elevated Pressures, Chao Yan May 2018

Kinetic Study Of Free Radical-Radical Reactions Of Combustion Importance At Elevated Pressures, Chao Yan

Dissertations

Combustion mechanisms consist of hundreds elementary reactions of free radicals and stable molecules. Radical-radical elementary reactions play important roles due to the high concentration in which free radicals are accumulated in combustion systems. Radical-radical reactions are typically multi-channel. Some of the channels might be of chain propagation or even chain branching nature, while other channels might be of chain termination nature. The relative importance of different channels is pressure dependent. Compared to radical-molecule reactions, radical-radical reactions are much less studied. This is due to the difficulties of well characterized quantitative production of radical species as well as due to the …


Investigating The Mechanism Of Deep-Focus Earthquakes Via In-Situ Acoustic Emission Experiments On Fe2sio4 At High Temperature And Pressure, Timothy Officer Dec 2017

Investigating The Mechanism Of Deep-Focus Earthquakes Via In-Situ Acoustic Emission Experiments On Fe2sio4 At High Temperature And Pressure, Timothy Officer

Electronic Thesis and Dissertation Repository

In subduction zones, earthquakes are thought to be associated with faulting that arises from phase transformations. In order to test the viability of this mechanism experimentally, it was necessary to make microseismic measurements while the mineral under investigation was subjected to the pressure and temperature (P,T) conditions corresponding to their environment at depth. A system has been developed capable of making in situ acoustic emission (AE) measurements on samples under P,T conditions representative of the upper mantle and transition zone. Experiments were performed in a 3000-ton multi-anvil press using an 18/11 octahedral cell with 6 piezoelectric transducers mounted on the …


Shear Driven Micro-Fluidic Pump For Cardiovascular Applications, Nihad E. Daidzic Apr 2017

Shear Driven Micro-Fluidic Pump For Cardiovascular Applications, Nihad E. Daidzic

Aviation Department Publications

A valveless shear-driven micro-fluidic pump design (SDMFP) for hemodynamic applications is presented in this work. One of the possible medical and biomedical applications is in-vivo hemodynamic (human blood circulation) support/assist. One or more SDMFPs can be inserted/implanted into vascular lumens in a form of a stent/duct in series and/or in parallel (bypass duct) to support blood circulation in-vivo. A comprehensive review of various micro-pump designs up to about mid 2000’s is given in [1,2]. Many of micropump designs considered are not suitable for in-vivo or even in-vitro medical/biomedical applications.

Operating principles, design, and SDMFP features are given in [3]. A …


High Pressure Studies Of Nanostructured Tio2 And Li4ti5o12 Using Raman Spectroscopy And Synchrotron X-Ray Radiation, Fengping Xiao Nov 2015

High Pressure Studies Of Nanostructured Tio2 And Li4ti5o12 Using Raman Spectroscopy And Synchrotron X-Ray Radiation, Fengping Xiao

Electronic Thesis and Dissertation Repository

Nanomaterials have been extensively studied due to their distinctive properties such as surface effect, small-size effect and quantum size effect. In recent year, investigations of the structural and phase transformations of nanomaterials under high pressure are receiving increasing attentions. In addition to composition and synthetic routes, pressure provides a clean way to adjust interatomic distance and hence affect the crystal structure and thus properties of the nanostructured materials.Two nanomaterials (i.e. TiO2 and Li4Ti5O12) with different morphologies are studied in this thesis.

In part I, the high-pressure behaviours of four hydrothermal synthesized 1D rutile …


In Situ High-Pressure Study Of Metal-Organic Frameworks And Their Performance For Co2 Storage Probed By Vibrational Spectroscopy, Yue Hu Aug 2015

In Situ High-Pressure Study Of Metal-Organic Frameworks And Their Performance For Co2 Storage Probed By Vibrational Spectroscopy, Yue Hu

Electronic Thesis and Dissertation Repository

Metal-organic frameworks (MOFs) are an important class of porous materials, owing to their potential applications in a variety of areas, including gas storage, molecular separations, catalysis, sensors and so on. Most importantly, their extraordinary surface areas, tunable pore properties and potential for industrial scale production have made MOFs a promising material for clean energy applications, such as CO2 storage. The chemical and mechanical stabilities of MOFs play a crucial role in their CO2 storage performance, which require extreme loading pressures that are far beyond ambient pressure at times. Application of high external pressure (e.g., in gigapascal range) on …


Enhanced Magnetism In Dy And Tb At Extreme Pressure, Jinhyuk Lim Aug 2015

Enhanced Magnetism In Dy And Tb At Extreme Pressure, Jinhyuk Lim

Arts & Sciences Electronic Theses and Dissertations

At ambient pressure all lanthanide metals order magnetically at temperatures at or below ambient. The magnetic ordering is known to result from the indirect exchange interaction between localized 4f magnetic moments mediated by the surrounding conduction electrons, the so-called Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. With the RKKY interaction the magnetic ordering temperature To is expected to be proportional to the de Gennes factor which is a function of the Landé g factor gJ and the total angular momentum J. For example, Gd has the highest value of To, 292 K, at ambient pressure as it has the largest de Gennes factor of …


High Pressure And High Temperature Study Of Magnesiochromite And Its Geophysical Implications, N M Tauhid Belal Khan May 2015

High Pressure And High Temperature Study Of Magnesiochromite And Its Geophysical Implications, N M Tauhid Belal Khan

Electronic Thesis and Dissertation Repository

Magnesiochromite (MgCr2O4) is commonly found in the Earth’s crust, upper mantle, meteorites, and possibly in lunar crust. Synchrotron X-ray diffraction measurements of MgCr2O4 using double-sided laser heating diamond anvil cell showed the dissociation of MgCr2O4 to Cr2O3+MgO at ~15 GPa and to Mg2Cr2O5+Cr2O3 below and above ~1500 K, respectively. At above 20 GPa, only a single phase CaTi2O4-type structure of MgCr2O4 was observed at 1400-2000 K. Fitting the pressure-volume data …


Tuning Electronic Correlation With Pressure, Gilberto Fernandes Lopes Fabbris Dec 2014

Tuning Electronic Correlation With Pressure, Gilberto Fernandes Lopes Fabbris

Arts & Sciences Electronic Theses and Dissertations

Strongly correlated electron systems display some of the most exotic ground states in condensed matter. In this thesis high pressure is used to tune the degree of electron correlations in systems of current interest. Their electronic and structural properties were investigated at high pressure using x-ray spectroscopy and scattering as well as transport techniques in a diamond anvil cell. The interplay between short- and long-range structural order, one-dimensional charge ordering, and superconductivity was studied in La1.875Ba0.125CuO4. At ambient pressure, this material displays charge ordering at the onset of a low temperature structural phase transition, …


Studies Of The Quantum Phase Transition In Chromium Using Inelastic X-Ray Scattering And Ab Initio Methods, Chengyang Li Jun 2014

Studies Of The Quantum Phase Transition In Chromium Using Inelastic X-Ray Scattering And Ab Initio Methods, Chengyang Li

Dissertations

In this project, inelastic x-ray scattering (IXS) was used to measure the phonon dispersion in chromium at high pressure and low temperature, and an ab initio method was used to simulate the phonon dispersion with different lattice constants and magnetic orders. The IXS measurements were carried out in Sector 30 at the Advanced Photon Source at Argonne National Laboratory. Data were taken at room temperature with pressures of 1.29 GPa, 8.15 GPa, 10.6 GPa, and at 5 K with a pressure of 18.36 GPa. The data shows similar phonon behavior in the antiferromagnetism (AFM) and the spin density wave (SDW) …


Optical Properties, Electronic Structures And High Pressure Study Of Nanostructured One Dimensional Titanium Dioxide By Synchrotron Radiation And Spectroscopy, Ankang Zhao Sep 2013

Optical Properties, Electronic Structures And High Pressure Study Of Nanostructured One Dimensional Titanium Dioxide By Synchrotron Radiation And Spectroscopy, Ankang Zhao

Electronic Thesis and Dissertation Repository

One dimensional (1D) titanium dioxide (TiO2) nanomaterials have been extensively studied in recent years due to their superior electrical, optical mechanical and chemical properties compared with their bulk counterparts. Two different kinds of 1D TiO2 nanomaterials, TiO2 nanowires (TiO2 NW) and TiO2 nanotubes (TiO2 NT), are studied in this thesis by using various techniques.

In one study, TiO2 NW synthesized by hydrothermal method and a series of calcinated TiO2 NW were investigated by using absorption near edge structures (XANES), X-ray diffraction (XRD) and X-ray excited optical luminescence (XEOL). It is found …


In Situ High-Pressure Studies Of Energetic Materials By Vibrational Spectroscopy And X-Ray Diffraction, Liang Zhou Aug 2013

In Situ High-Pressure Studies Of Energetic Materials By Vibrational Spectroscopy And X-Ray Diffraction, Liang Zhou

Electronic Thesis and Dissertation Repository

Nitrogen-rich materials have been considered as the most promising replacement of traditional energetic materials due to the large energy gap between the different nitrogen allotropes as well as the generation of environmental friendly nitrogen gas as the end-product. As a result, methods of synthesizing the nitrogen-rich materials have received increasing attention. Apart from the traditional chemical synthesis, high-pressure technique had been proved an effective tool to create such kinds of materials. However, several issues still existed concerning the high-pressure synthesis of energetic materials. Therefore, searching for precursors is of great interest. Here we report studies of four promising precursors, 5-aminotetrazole, …


In Situ High-Pressure Studies Of Ammonia Borane Derivatives By Vibrational Spectroscopy, Zhihao Yu Aug 2013

In Situ High-Pressure Studies Of Ammonia Borane Derivatives By Vibrational Spectroscopy, Zhihao Yu

Electronic Thesis and Dissertation Repository

Hydrogen has been regarded as a promising candidate to replace the conventional fossil fuel, and thus attracted enormous research efforts. However, hydrogen storage remains to be a big challenge to its practical applications. Consequently, the investigation of suitable hydrogen storage materials has become a highly active research field. Here we reported the first high pressure studies of three promising hydrogen storage materials, N(CH3)3BH3, NH(CH3)2BH3 and NaNH2BH3 by Raman and IR spectroscopy.

First, N(CH3)3BH3 was studied at room temperature and pressures up …


Strength, Elasticity And Phase Transition Study On Nacl And Mgo-Nacl Mixture To Mantle Pressures, Zhongying Mi Dec 2012

Strength, Elasticity And Phase Transition Study On Nacl And Mgo-Nacl Mixture To Mantle Pressures, Zhongying Mi

Electronic Thesis and Dissertation Repository

Rheological properties of the Earth control most of the important geological processes, such as mantle convection, plate tectonics, earthquakes and nature of thermal evolution. Most parts of the Earth consist of multi-phase polycrystalline aggregates with various composition and compressibility. Therefore, deformation studies on multi-phase materials are important to understand the rheological properties and convection of the Earth. NaCl and MgO with large contrast in elastic properties are excellent analogue materials for modelling the Earth that is generally made of both strong and weak materials. In addition, NaCl and MgO are widely used as pressure transmitting medium and pressure calibration standard …


High Pressure Micro-Spectroscopy Of Biological Assemblies And Cells, Sang Hoon Park Jan 2012

High Pressure Micro-Spectroscopy Of Biological Assemblies And Cells, Sang Hoon Park

Electronic Theses and Dissertations

Functional properties of living cells depend on the thermodynamic variables such as temperature and pressure. A unique tool to investigate volume effects on structure and metabolism of the cell and biomolecules is pressure perturbation. We have developed a new setup that enables micro-spectroscopy and optical imaging of individual live cells at variable pressure from 0.1 to 400 MPa. Following characterization of the setup, pressure and temperature effects on the secondary structure of the peptide Poly-L-glutamic acid (PGA) in deuterated water buffer solution were investigated. The amide I band of PGA is sensitive to pressure and temperature, and by spectral deconvolution, …