Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Physics Faculty Publications

2015

Discipline
Institution
Keyword

Articles 91 - 92 of 92

Full-Text Articles in Physical Sciences and Mathematics

Development Of Srf Cavity Tuners For Cern, K. Artoos, R. Calaga, O. Capatina, T. Capelli, F. Carra, L. Dassa, N. Kuder, R. Leuxe, P. Minginette, W. Venturini Delsolaro, G. Villiger, C. Zanoni, P. Zhang, S. Verdu-Andrés, B. Xiao, G. Burt, J. Delayen, Hyekyoung Park, T. Jones, N. Templeton Jan 2015

Development Of Srf Cavity Tuners For Cern, K. Artoos, R. Calaga, O. Capatina, T. Capelli, F. Carra, L. Dassa, N. Kuder, R. Leuxe, P. Minginette, W. Venturini Delsolaro, G. Villiger, C. Zanoni, P. Zhang, S. Verdu-Andrés, B. Xiao, G. Burt, J. Delayen, Hyekyoung Park, T. Jones, N. Templeton

Physics Faculty Publications

Superconducting RF cavity developments are currently on-going for new accelerator projects at CERN such as HIE ISOLDE and HL-LHC. Mechanical RF tuning systems are required to compensate cavity frequency shifts of the cavities due to temperature, mechanical, pressure and RF effects on the cavity geometry. A rich history and experience is available for such mechanical tuners developed for existing RF cavities. Design constraints in the context of HIE ISOLDE and HL-LHC such as required resolution, space limitation, reliability and maintainability have led to new concepts in the tuning mechanisms. This paper will discuss such new approaches, their performances and planned …


Control Of Synchrotron Radiation Effects During Recirculation With Bunch Compression, D. R. Douglas, S. V. Benson, R. Li, Y. Roblin, C. D. Tennant, Geoffrey A. Krafft, Balŝa Terzić, C. -Y. Tsai Jan 2015

Control Of Synchrotron Radiation Effects During Recirculation With Bunch Compression, D. R. Douglas, S. V. Benson, R. Li, Y. Roblin, C. D. Tennant, Geoffrey A. Krafft, Balŝa Terzić, C. -Y. Tsai

Physics Faculty Publications

Studies of beam quality preservation during recirculation * have been extended to generate a design of a compact arc providing bunch compression with positive momentum compaction ** and control of both incoherent and coherent synchrotron radiation (ISR and CSR) effects using the optics balance methods of diMitri et al.***. In addition, the arc/compressor generates very little micro-bunching gain. We detail the beam dynamical basis for the design, discuss the design process, give an example solution, and provide simulations of ISR and CSR effects. Reference will be made to a complete analysis of micro-bunching effects ****.