Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Molecular Dynamics Studies Of Interactions Of Phospholipid Membranes With Dehydroergosterol And Penetrating Peptides, Amir Mohsen Pourmousa Abkenar Dec 2011

Molecular Dynamics Studies Of Interactions Of Phospholipid Membranes With Dehydroergosterol And Penetrating Peptides, Amir Mohsen Pourmousa Abkenar

Electronic Thesis and Dissertation Repository

We have performed molecular modeling of membrane and peptide systems by employing the classical molecular dynamics method and force field parameterizations. In this thesis, our main interest is the interaction of sterols as well as peptides with membranes. The thesis consists of three related projects. The first project focuses on cholesterol (CHOL) and dehydroergosterol (DHE) interacting with palmitoyl-oleoyl phosphatidylcholine (POPC) lipid bilayers. We study the effects of both sterols on the bilayer and compare them with each other. We first study the condensing and ordering effect of these sterols. Then, we study their orientations within the bilayer and relate them …


Exploring Bacterial Nanowires: From Properties To Functions And Implications, Kar Man Leung Aug 2011

Exploring Bacterial Nanowires: From Properties To Functions And Implications, Kar Man Leung

Electronic Thesis and Dissertation Repository

The discovery of electrically conductive bacterial nanowires from a broad range of microbes provides completely new insights into microbial physiology. Shewanella oneidensis strain MR-1, a dissimilatory metal-reducing bacterium, produces extracellular bacterial nanowires up to tens of micrometers long, with a lateral dimension of ~10 nm. The Shewanella bacterial nanowires are efficient electrical conductors as revealed by scanning probe techniques such as CP-AFM and STM.

Direct electrical transport measurements along Shewanella nanowires reveal a measured nanowire resistivity on the order of 1 Ω∙cm. With electron transport rates up to 109/s at 100 mV, bacterial nanowires can serve as a …