Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Structural Tuning And Spectroscopic Characterizations Of Polysulfide As Battery Materials, Daiqiang Liu Oct 2021

Structural Tuning And Spectroscopic Characterizations Of Polysulfide As Battery Materials, Daiqiang Liu

Electronic Thesis and Dissertation Repository

Polysulfide materials have drawn extensive attention for next-generation battery development since the current lithium-ion battery has almost reached its limit regarding energy density and safety issues. Many phosphorus and sodium sulfide materials have been used in different battery types, such as solid-state and sodium-sulfur batteries. However, there are still issues that prevent these techniques from applications. In recent years, there has been increasing attention on investigations of the structural and phase transformations of electrode and electrolyte materials under high pressure. Many studies have shown that external pressure can affect structural properties and influence electrical properties. In this study, three battery-related …


Synchrotron X-Ray Characterizations Of Black Phosphorus: Preparation, Doping And Applications In Energy Storage, Minsi Li Aug 2021

Synchrotron X-Ray Characterizations Of Black Phosphorus: Preparation, Doping And Applications In Energy Storage, Minsi Li

Electronic Thesis and Dissertation Repository

Black phosphorus (BP), as a two-dimensional material, has attracted interest in recent decades due to its unique properties—tunable band gap and high carrier mobility. Specifically, BP shows ultra-high theoretical capacity of 2595 mA h g-1, resulting in high potential practical applications in lithium-ion batteries (LIBs). However, several challenges limit the development of BP in the energy storage field and LIBs: 1) The cost of the current synthesis methods of BP is too high to support extensive research studies and practical applications; 2) The electrical conductivity of BP is insufficient in LIBs; 3) The huge volume change of BP …


The Design And Characterization Of Advanced Li Metal Anodes For Next-Generation Batteries, Keegan R. Adair Aug 2021

The Design And Characterization Of Advanced Li Metal Anodes For Next-Generation Batteries, Keegan R. Adair

Electronic Thesis and Dissertation Repository

Li metal batteries have been widely regarded as the next stage of energy storage technology, which is enabled by the low electrochemical potential (-3.04 V vs. the standard hydrogen electrode) and high specific capacity (3860 mAh g-1) of the Li metal anode. However, the implementation of Li metal anodes has been hindered by several issues including parasitic side reactions with electrolyte, large volume fluctuations, and dendrite formation which can cause short-circuits and safety issues. This thesis will cover some novel Li anode stabilization strategies while using advanced characterization techniques to provide critical information on the working mechanisms of …


Development Of Advanced Solid-State Electrolytes And Interfaces For High-Performance Sulfide-Based All-Solid-State Lithium Batteries, Feipeng Zhao Aug 2021

Development Of Advanced Solid-State Electrolytes And Interfaces For High-Performance Sulfide-Based All-Solid-State Lithium Batteries, Feipeng Zhao

Electronic Thesis and Dissertation Repository

All-solid-state lithium batteries (ASSLBs) have become increasingly attractive due to the demand of high-energy-density and high-safety lithium-ion batteries for electric vehicles (EVs). As the core component of ASSLBs, solid-state electrolytes (SSEs) are regarded as essential to determine the electrochemical performance of ASSLBs. The inorganic SSEs is one of the most important categories in all developed SSEs, representing the advance of superionic lithium conductors as well as the cornerstone to construct flexible polymer/inorganic composite SSEs. The sulfide-based inorganic SSE is one of the most promising SSEs that is receiving a lot of attentions, because only sulfide SSEs can show ultrahigh ionic …


Nanoorthogonal Surface Modifications Of Gold Nanoparticles And Nanoclusters Through Strain-Promoted Cycloaddition Chemistry, Praveen N. Gunawardene Jul 2021

Nanoorthogonal Surface Modifications Of Gold Nanoparticles And Nanoclusters Through Strain-Promoted Cycloaddition Chemistry, Praveen N. Gunawardene

Electronic Thesis and Dissertation Repository

This thesis explores the preparation of thiolated gold nanoparticles (AuNPs) and thiolated gold nanoclusters (AuNCs) capable of undergoing post-assembly surface modifications using two common “bioorthogonal” click reactions: the strain-promoted alkyne-azide cycloaddition (SPAAC) reaction (which occurs between a strained-alkyne and an azide) and the strain-promoted alkyne-nitrone cycloaddition (SPANC) reaction (which occurs between a strained-alkyne and a nitrone). Due to their rapid and modifiable reaction kinetics, high chemoselectivity, and stability of the reactive partners, these reactions were originally designed to tether functional substrates to biologically sensitive biomolecules, without altering their structure or perturb the biologically sensitive environments in which they …


Galvanic Corrosion Of Carbon Steel Coupled To Copper In Used Nuclear Fuel Containers, Lindsay J. Braithwaite Mar 2021

Galvanic Corrosion Of Carbon Steel Coupled To Copper In Used Nuclear Fuel Containers, Lindsay J. Braithwaite

Electronic Thesis and Dissertation Repository

Deep geological containment of used nuclear fuel will rely on multiple engineered and natural barriers, two of which are the copper-coated used fuel containers and the compacted bentonite clay buffer boxes in which the containers will rest. This work focused on possible galvanic interactions between the copper coating and the steel substrate of the container, which may occur at a hypothetical through-coating defect. In the presence of various amounts of chloride, bentonite, and oxygen, corrosion of the copper/carbon steel couple was studied using electrochemical tests complemented by surface characterization and 3D X-ray imaging. We investigated the effects of copper-to-steel area …