Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theory and Algorithms

Old Dominion University

Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 218

Full-Text Articles in Physical Sciences and Mathematics

Improving Educational Delivery And Content In Juvenile Detention Centers, Yomna Elmousalami Mar 2024

Improving Educational Delivery And Content In Juvenile Detention Centers, Yomna Elmousalami

Undergraduate Research Symposium

Students in juvenile detention centers have the greatest need to receive improvements in educational delivery and content; however, they are one of the “truly disadvantaged” populations in terms of receiving those improvements. This work presents a qualitative data analysis based on a focus group meeting with stakeholders at a local Juvenile Detention Center. The current educational system in juvenile detention centers is based on paper worksheets, single-room style teaching methods, outdated technology, and a shortage of textbooks and teachers. In addition, detained students typically have behavioral challenges that are deemed "undesired" in society. As a result, many students miss classes …


Accelerating Markov Chain Monte Carlo Sampling With Diffusion Models, N. T. Hunt-Smith, W. Melnitchouk, F. Ringer, N. Sato, A. W. Thomas, M. J. White Jan 2024

Accelerating Markov Chain Monte Carlo Sampling With Diffusion Models, N. T. Hunt-Smith, W. Melnitchouk, F. Ringer, N. Sato, A. W. Thomas, M. J. White

Physics Faculty Publications

Global fits of physics models require efficient methods for exploring high-dimensional and/or multimodal posterior functions. We introduce a novel method for accelerating Markov Chain Monte Carlo (MCMC) sampling by pairing a Metropolis-Hastings algorithm with a diffusion model that can draw global samples with the aim of approximating the posterior. We briefly review diffusion models in the context of image synthesis before providing a streamlined diffusion model tailored towards low-dimensional data arrays. We then present our adapted Metropolis-Hastings algorithm which combines local proposals with global proposals taken from a diffusion model that is regularly trained on the samples produced during the …


Modeling Coupled Driving Behavior During Lane Change: A Multi-Agent Transformer Reinforcement Learning Approach, Hongyu Guo, Mehdi Keyvan-Ekbatani, Kun Xie Jan 2024

Modeling Coupled Driving Behavior During Lane Change: A Multi-Agent Transformer Reinforcement Learning Approach, Hongyu Guo, Mehdi Keyvan-Ekbatani, Kun Xie

Civil & Environmental Engineering Faculty Publications

In a lane change (LC) scenario, the lane change vehicle interacts with surrounding vehicles. The interactions not only affect their driving behaviors but also influence the traffic flow. This study aims to model the coupled behavior of the lane changer and the follower in the target lane during LC. Large-scale real-world connected vehicle (CV) data from the Safety Pilot Model Deployment (SPMD) program are used to extract LCs and study vehicle interactions. A multi-agent Transformer-based deep deterministic policy gradient (MA-TDDPG) method is proposed to model the coupled behaviors during LC. The multi-agent framework can handle the multiple agents’ behaviors with …


Physics-Informed Deep Learning With Kalman Filter Mixture For Traffic State Prediction, Niharika Deshpande, Hyoshin (John) Park Jan 2024

Physics-Informed Deep Learning With Kalman Filter Mixture For Traffic State Prediction, Niharika Deshpande, Hyoshin (John) Park

Engineering Management & Systems Engineering Faculty Publications

Accurate traffic forecasting is crucial for understanding and managing congestion for efficient transportation planning. However, conventional approaches often neglect epistemic uncertainty, which arises from incomplete knowledge across different spatiotemporal scales. This study addresses this challenge by introducing a novel methodology to establish dynamic spatiotemporal correlations that captures the unobserved heterogeneity in travel time through distinct peaks in probability density functions, guided by physics-based principles. We propose an innovative approach to modifying both prediction and correction steps of the Kalman Filter (KF) algorithm by leveraging established spatiotemporal correlations. Central to our approach is the development of a novel deep learning model …


Using Feature Selection Enhancement To Evaluate Attack Detection In The Internet Of Things Environment, Khawlah Harahsheh, Rami Al-Naimat, Chung-Hao Chen Jan 2024

Using Feature Selection Enhancement To Evaluate Attack Detection In The Internet Of Things Environment, Khawlah Harahsheh, Rami Al-Naimat, Chung-Hao Chen

Electrical & Computer Engineering Faculty Publications

The rapid evolution of technology has given rise to a connected world where billions of devices interact seamlessly, forming what is known as the Internet of Things (IoT). While the IoT offers incredible convenience and efficiency, it presents a significant challenge to cybersecurity and is characterized by various power, capacity, and computational process limitations. Machine learning techniques, particularly those encompassing supervised classification techniques, offer a systematic approach to training models using labeled datasets. These techniques enable intrusion detection systems (IDSs) to discern patterns indicative of potential attacks amidst the vast amounts of IoT data. Our investigation delves into various aspects …


Adversarial Training Based Domain Adaptation Of Skin Cancer Images, Syed Qasim Gilani, Muhammad Umair, Maryam Naqvi, Oge Marques, Hee-Cheol Kim Jan 2024

Adversarial Training Based Domain Adaptation Of Skin Cancer Images, Syed Qasim Gilani, Muhammad Umair, Maryam Naqvi, Oge Marques, Hee-Cheol Kim

Electrical & Computer Engineering Faculty Publications

Skin lesion datasets used in the research are highly imbalanced; Generative Adversarial Networks can generate synthetic skin lesion images to solve the class imbalance problem, but it can result in bias and domain shift. Domain shifts in skin lesion datasets can also occur if different instruments or imaging resolutions are used to capture skin lesion images. The deep learning models may not perform well in the presence of bias and domain shift in skin lesion datasets. This work presents a domain adaptation algorithm-based methodology for mitigating the effects of domain shift and bias in skin lesion datasets. Six experiments were …


Abmscore: A Heuristic Algorithm For Forming Strategic Coalitions In Agent-Based Simulation, Andrew J. Collins, Gayane Grigoryan Jan 2024

Abmscore: A Heuristic Algorithm For Forming Strategic Coalitions In Agent-Based Simulation, Andrew J. Collins, Gayane Grigoryan

Engineering Management & Systems Engineering Faculty Publications

Integrating human behavior into agent-based models has been challenging due to its diversity. An example is strategic coalition formation, which occurs when an individual decides to collaborate with others because it strategically benefits them, thereby increasing the expected utility of the situation. An algorithm called ABMSCORE was developed to help model strategic coalition formation in agent-based models. The ABMSCORE algorithm employs hedonic games from cooperative game theory and has been applied to various situations, including refugee egress and smallholder farming cooperatives. This paper discusses ABMSCORE, including its mechanism, requirements, limitations, and application. To demonstrate the potential of ABMSCORE, a new …


Data Science In Finance: Challenges And Opportunities, Xianrong Zheng, Elizabeth Gildea, Sheng Chai, Tongxiao Zhang, Shuxi Wang Jan 2024

Data Science In Finance: Challenges And Opportunities, Xianrong Zheng, Elizabeth Gildea, Sheng Chai, Tongxiao Zhang, Shuxi Wang

Information Technology & Decision Sciences Faculty Publications

Data science has become increasingly popular due to emerging technologies, including generative AI, big data, deep learning, etc. It can provide insights from data that are hard to determine from a human perspective. Data science in finance helps to provide more personal and safer experiences for customers and develop cutting-edge solutions for a company. This paper surveys the challenges and opportunities in applying data science to finance. It provides a state-of-the-art review of financial technologies, algorithmic trading, and fraud detection. Also, the paper identifies two research topics. One is how to use generative AI in algorithmic trading. The other is …


The Feasibility Of Motion Tracking Camera System For Magnetic Suspension Wind Tunnel Tests, Hisham M. Shehata, David Cox, Mark Schoenenberger, Colin Britcher, Eli Shellabarger, Timothy Schott, Brendan Mcgovern Jan 2024

The Feasibility Of Motion Tracking Camera System For Magnetic Suspension Wind Tunnel Tests, Hisham M. Shehata, David Cox, Mark Schoenenberger, Colin Britcher, Eli Shellabarger, Timothy Schott, Brendan Mcgovern

Mechanical & Aerospace Engineering Faculty Publications

The Entry Systems Modeling (ESM) Program at NASA has actively participated in the re-development of the Magnetic Suspension Balance System (MSBS) at the six-inch subsonic wind tunnel at NASA Langley Research Center. This initiative aims to enhance the MSBS system's capabilities, enabling the testing of stingless entry vehicle models at supersonic speeds. To achieve this, control algorithms are required to ensure magnetic levitation control and stability for models during free-oscillation dynamic responses. Currently, the system relies on electromagnetic position sensors to provide real-time 3 degrees of freedom control of a rigid body. While this approach has proven successful for subsonic …


Inexact Fixed-Point Proximity Algorithm For The ℓ₀ Sparse Regularization Problem, Ronglong Fang, Yuesheng Xu, Mingsong Yan Jan 2024

Inexact Fixed-Point Proximity Algorithm For The ℓ₀ Sparse Regularization Problem, Ronglong Fang, Yuesheng Xu, Mingsong Yan

Mathematics & Statistics Faculty Publications

We study inexact fixed-point proximity algorithms for solving a class of sparse regularization problems involving the ℓ₀ norm. Specifically, the ℓ₀ model has an objective function that is the sum of a convex fidelity term and a Moreau envelope of the ℓ₀ norm regularization term. Such an ℓ₀ model is non-convex. Existing exact algorithms for solving the problems require the availability of closed-form formulas for the proximity operator of convex functions involved in the objective function. When such formulas are not available, numerical computation of the proximity operator becomes inevitable. This leads to inexact iteration algorithms. We investigate in this …


Hyperparameter Estimation For Sparse Bayesian Learning Models, Feng Yu, Lixin Shen, Guohui Song Jan 2024

Hyperparameter Estimation For Sparse Bayesian Learning Models, Feng Yu, Lixin Shen, Guohui Song

Mathematics & Statistics Faculty Publications

Sparse Bayesian learning (SBL) models are extensively used in signal processing and machine learning for promoting sparsity through hierarchical priors. The hyperparameters in SBL models are crucial for the model’s performance, but they are often difficult to estimate due to the nonconvexity and the high-dimensionality of the associated objective function. This paper presents a comprehensive framework for hyperparameter estimation in SBL models, encompassing well-known algorithms such as the expectation-maximization, MacKay, and convex bounding algorithms. These algorithms are cohesively interpreted within an alternating minimization and linearization (AML) paradigm, distinguished by their unique linearized surrogate functions. Additionally, a novel algorithm within the …


A Chinese Power Text Classification Algorithm Based On Deep Active Learning, Song Deng, Qianliang Li, Renjie Dai, Siming Wei, Di Wu, Yi He, Xindong Wu Jan 2024

A Chinese Power Text Classification Algorithm Based On Deep Active Learning, Song Deng, Qianliang Li, Renjie Dai, Siming Wei, Di Wu, Yi He, Xindong Wu

Computer Science Faculty Publications

The construction of knowledge graph is beneficial for grid production, electrical safety protection, fault diagnosis and traceability in an observable and controllable way. Highly-precision text classification algorithm is crucial to build a professional knowledge graph in power system. Unfortunately, there are a large number of poorly described and specialized texts in the power business system, and the amount of data containing valid labels in these texts is low. This will bring great challenges to improve the precision of text classification models. To offset the gap, we propose a classification algorithm for Chinese text in the power system based on deep …


Learning Optimal Inter-Class Margin Adaptively For Few-Shot Class-Incremental Learning Via Neural Collapse-Based Meta-Learning, Hang Ran, Weijun Li, Lusi Li, Songsong Tian, Xin Ning, Prayag Tiwari Jan 2024

Learning Optimal Inter-Class Margin Adaptively For Few-Shot Class-Incremental Learning Via Neural Collapse-Based Meta-Learning, Hang Ran, Weijun Li, Lusi Li, Songsong Tian, Xin Ning, Prayag Tiwari

Computer Science Faculty Publications

Few-Shot Class-Incremental Learning (FSCIL) aims to learn new classes incrementally with a limited number of samples per class. It faces issues of forgetting previously learned classes and overfitting on few-shot classes. An efficient strategy is to learn features that are discriminative in both base and incremental sessions. Current methods improve discriminability by manually designing inter-class margins based on empirical observations, which can be suboptimal. The emerging Neural Collapse (NC) theory provides a theoretically optimal inter-class margin for classification, serving as a basis for adaptively computing the margin. Yet, it is designed for closed, balanced data, not for sequential or few-shot …


Osfs-Vague: Online Streaming Feature Selection Algorithm Based On A Vague Set, Jie Yang, Zhijun Wang, Guoyin Wang, Yanmin Liu, Yi He, Di Wu Jan 2024

Osfs-Vague: Online Streaming Feature Selection Algorithm Based On A Vague Set, Jie Yang, Zhijun Wang, Guoyin Wang, Yanmin Liu, Yi He, Di Wu

Computer Science Faculty Publications

Online streaming feature selection (OSFS), as an online learning manner to handle streaming features, is critical in addressing high-dimensional data. In real big data-related applications, the patterns and distributions of streaming features constantly change over time due to dynamic data generation environments. However, existing OSFS methods rely on presented and fixed hyperparameters, which undoubtedly lead to poor selection performance when encountering dynamic features. To make up for the existing shortcomings, the authors propose a novel OSFS algorithm based on vague set, named OSFS-Vague. Its main idea is to combine uncertainty and three-way decision theories to improve feature selection from the …


Image-To-Mesh Conversion Method For Multi-Tissue Medical Image Computing Simulations, Fotis Drakopoulos, Yixun Liu, Kevin Garner, Nikos Chrisochoides Jan 2024

Image-To-Mesh Conversion Method For Multi-Tissue Medical Image Computing Simulations, Fotis Drakopoulos, Yixun Liu, Kevin Garner, Nikos Chrisochoides

Computer Science Faculty Publications

Converting a three-dimensional medical image into a 3D mesh that satisfies both the quality and fidelity constraints of predictive simulations and image-guided surgical procedures remains a critical problem. Presented is an image-to-mesh conversion method called CBC3D. It first discretizes a segmented image by generating an adaptive Body-Centered Cubic mesh of high-quality elements. Next, the tetrahedral mesh is converted into a mixed element mesh of tetrahedra, pentahedra, and hexahedra to decrease element count while maintaining quality. Finally, the mesh surfaces are deformed to their corresponding physical image boundaries, improving the mesh’s fidelity. The deformation scheme builds upon the ITK open-source library …


Continuous-Variable Quantum Computation Of The O(3) Model In 1+1 Dimensions, Raghav G. Jha, Felix Ringer, George Siopsis, Shane Thompson Jan 2024

Continuous-Variable Quantum Computation Of The O(3) Model In 1+1 Dimensions, Raghav G. Jha, Felix Ringer, George Siopsis, Shane Thompson

Physics Faculty Publications

We formulate the O(3) nonlinear sigma model in 1+1 dimensions as a limit of a three-component scalar field theory restricted to the unit sphere in the large squeezing limit. This allows us to describe the model in terms of the continuous-variable (CV) approach to quantum computing. We construct the ground state and excited states using the coupled-cluster Ansatz and find excellent agreement with the exact diagonalization results for a small number of lattice sites. We then present the simulation protocol for the time evolution of the model using CV gates and obtain numerical results using a photonic quantum simulator. We …


The Vulnerabilities To The Rsa Algorithm And Future Alternative Algorithms To Improve Security, James Johnson Dec 2023

The Vulnerabilities To The Rsa Algorithm And Future Alternative Algorithms To Improve Security, James Johnson

Cybersecurity Undergraduate Research Showcase

The RSA encryption algorithm has secured many large systems, including bank systems, data encryption in emails, several online transactions, etc. Benefiting from the use of asymmetric cryptography and properties of number theory, RSA was widely regarded as one of most difficult algorithms to decrypt without a key, especially since by brute force, breaking the algorithm would take thousands of years. However, in recent times, research has shown that RSA is getting closer to being efficiently decrypted classically, using algebraic methods, (fully cracked through limited bits) in which elliptic-curve cryptography has been thought of as the alternative that is stronger than …


Integrating Ai Into Uavs, Huong Quach Dec 2023

Integrating Ai Into Uavs, Huong Quach

Cybersecurity Undergraduate Research Showcase

This research project explores the application of Deep Learning (DL) techniques, specifically Convolutional Neural Networks (CNNs), to develop a smoke detection algorithm for deployment on mobile platforms, such as drones and self-driving vehicles. The project focuses on enhancing the decision-making capabilities of these platforms in emergency response situations. The methodology involves three phases: algorithm development, algorithm implementation, and testing and optimization. The developed CNN model, based on ResNet50 architecture, is trained on a dataset of fire, smoke, and neutral images obtained from the web. The algorithm is implemented on the Jetson Nano platform to provide responsive support for first responders. …


Machine Learning Approach To Activity Categorization In Young Adults Using Biomechanical Metrics, Nathan Q. C. Holland Oct 2023

Machine Learning Approach To Activity Categorization In Young Adults Using Biomechanical Metrics, Nathan Q. C. Holland

Mechanical & Aerospace Engineering Theses & Dissertations

Inactive adults often have decreased musculoskeletal health and increased risk factors for chronic diseases. However, there is limited data linking biomechanical measurements of generally healthy young adults to their physical activity levels assessed through questionnaires. Commonly used data collection methods in biomechanics for assessing musculoskeletal health include but are not limited to muscle quality (measured as echo intensity when using ultrasound), isokinetic (i.e., dynamic) muscle strength, muscle activations, and functional movement assessments using motion capture systems. These assessments can be time consuming for both data collection and processing. Therefore, understanding if all biomechanical assessments are necessary to classify the activity …


Optimal Domain-Partitioning Algorithm For Real-Life Transportation Networks And Finite Element Meshes, Jimesh Bhagatji, Sharanabasaweshwara Asundi, Eric Thompson, Duc T. Nguyen Jun 2023

Optimal Domain-Partitioning Algorithm For Real-Life Transportation Networks And Finite Element Meshes, Jimesh Bhagatji, Sharanabasaweshwara Asundi, Eric Thompson, Duc T. Nguyen

Civil & Environmental Engineering Faculty Publications

For large-scale engineering problems, it has been generally accepted that domain-partitioning algorithms are highly desirable for general-purpose finite element analysis (FEA). This paper presents a heuristic numerical algorithm that can efficiently partition any transportation network (or any finite element mesh) into a specified number of subdomains (usually depending on the number of parallel processors available on a computer), which will result in “minimising the total number of system BOUNDARY nodes” (as a primary criterion) and achieve “balancing work loads” amongst the subdomains (as a secondary criterion). The proposed seven-step heuristic algorithm (with enhancement features) is based on engineering common sense …


U-Net Based Multiclass Semantic Segmentation For Natural Disaster Based Satellite Imagery, Nishat Ara Nipa Apr 2023

U-Net Based Multiclass Semantic Segmentation For Natural Disaster Based Satellite Imagery, Nishat Ara Nipa

Modeling, Simulation and Visualization Student Capstone Conference

Satellite image analysis of natural disasters is critical for effective emergency response, relief planning, and disaster prevention. Semantic segmentation is believed to be on of the best techniques to capture pixelwise information in computer vision. In this work we will be using a U-Net architecture to do a three class semantic segmentation for the Xview2 dataset to capture the level of damage caused by different natural disaster which is beyond the visual scope of human eyes.


An Algorithm For Finding Data Dependencies In An Event Graph, Erik J. Jensen Apr 2023

An Algorithm For Finding Data Dependencies In An Event Graph, Erik J. Jensen

Modeling, Simulation and Visualization Student Capstone Conference

This work presents an algorithm for finding data dependencies in a discrete-event simulation system, from the event graph of the system. The algorithm can be used within a parallel discrete-event simulation. Also presented is an experimental system and event graph, which is used for testing the algorithm. Results indicate that the algorithm can provide information about which vertices in the experimental event graph can affect other vertices, and the minimum amount of time in which this interference can occur.


Enhancing Pedestrian-Autonomous Vehicle Safety In Low Visibility Scenarios: A Comprehensive Simulation Method, Zizheng Yan, Yang Liu, Hong Yang Apr 2023

Enhancing Pedestrian-Autonomous Vehicle Safety In Low Visibility Scenarios: A Comprehensive Simulation Method, Zizheng Yan, Yang Liu, Hong Yang

Modeling, Simulation and Visualization Student Capstone Conference

Self-driving cars raise safety concerns, particularly regarding pedestrian interactions. Current research lacks a systematic understanding of these interactions in diverse scenarios. Autonomous Vehicle (AV) performance can vary due to perception accuracy, algorithm reliability, and environmental dynamics. This study examines AV-pedestrian safety issues, focusing on low visibility conditions, using a co-simulation framework combining virtual reality and an autonomous driving simulator. 40 experiments were conducted, extracting surrogate safety measures (SSMs) from AV and pedestrian trajectories. The results indicate that low visibility can impair AV performance, increasing conflict risks for pedestrians. AV algorithms may require further enhancements and validations for consistent safety performance …


Joint Congestion And Contention Avoidance In A Scalable Qos-Aware Opportunistic Routing In Wireless Ad-Hoc Networks, Ali Parsa, Neda Moghim, Sasan Haghani Jan 2023

Joint Congestion And Contention Avoidance In A Scalable Qos-Aware Opportunistic Routing In Wireless Ad-Hoc Networks, Ali Parsa, Neda Moghim, Sasan Haghani

VMASC Publications

Opportunistic routing (OR) can greatly increase transmission reliability and network throughput in wireless ad-hoc networks by taking advantage of the broadcast nature of the wireless medium. However, network congestion is a barrier in the way of OR's performance improvement, and network congestion control is a challenge in OR algorithms, because only the pure physical channel conditions of the links are considered in forwarding decisions. This paper proposes a new method to control network congestion in OR, considering three types of parameters, namely, the backlogged traffic, the traffic flows' Quality of Service (QoS) level, and the channel occupancy rate. Simulation results …


Efficient Maritime Object Detection And Validation For Enhancing Safety Of Uncrewed Marine Systems, Ahmed Saglam, Yiannis Papelis Jan 2023

Efficient Maritime Object Detection And Validation For Enhancing Safety Of Uncrewed Marine Systems, Ahmed Saglam, Yiannis Papelis

VMASC Publications

Safe operation of uncrewed maritime systems is a major concern in the presence of other vehicles or obstacles. Typically, perception algorithms utilize sensor data to identify obstacles that must be avoided, and AI algorithms are used to interpret raw sensor data for use in navigation and object avoidance algorithms. However, perception algorithms are typically computationally expensive. In this paper, we present an efficient method for detecting obstacles using raw lidar data in the form of range or Point Cloud, employing computationally efficient techniques that do not depend on trained models or AI matching. The approach
converts the sensor readings into …


Assessing Univariate And Multivariate Normality In Pls-Sem, Kathy Qing Ma, Weiyong Zhang Jan 2023

Assessing Univariate And Multivariate Normality In Pls-Sem, Kathy Qing Ma, Weiyong Zhang

Information Technology & Decision Sciences Faculty Publications

Partial least squares structural equation modeling (PLS-SEM) has gained popularity among researchers in part due to its relaxed requirement for multivariate normality. One important step in performing structural equation modeling (SEM) is to test the normality assumption. In this paper, we illustrate how to assess univariate and multivariate normality in PLS-SEM using WarpPLS.


Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal Jan 2023

Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal

Mechanical & Aerospace Engineering Faculty Publications

This paper expands the authors’ prior work[1], which focuses on developing a convolutional neural network (CNN) model capable of mapping time-averaged, unsteady Reynold’s-averaged Navier-Stokes (URANS) simulations to higher resolution results informed by time-averaged detached eddy simulations (DES). The authors present improvements over the prior CNN autoencoder model that result from hyperparameter optimization, increased data set augmentation through the adoption of a patch-wise training approach, and the predictions of primitive variables rather than vorticity magnitude. The training of the CNN model developed in this study uses the same URANS and DES simulations of a transonic flow around several NACA 4-digit airfoils …


Machine-Assisted Discovery Of Integrable Symplectic Mappings, T. Zolkin, Y. Kharkov, S. Nagaitsev Jan 2023

Machine-Assisted Discovery Of Integrable Symplectic Mappings, T. Zolkin, Y. Kharkov, S. Nagaitsev

Physics Faculty Publications

We present a new automated method for finding integrable symplectic maps of the plane. These dynamical systems possess a hidden symmetry associated with an existence of conserved quantities, i.e., integrals of motion. The core idea of the algorithm is based on the knowledge that the evolution of an integrable system in the phase space is restricted to a lower-dimensional submanifold. Limiting ourselves to polygon invariants of motion, we analyze the shape of individual trajectories thus successfully distinguishing integrable motion from chaotic cases. For example, our method rediscovers some of the famous McMillan-Suris integrable mappings and ultradiscrete Painlevé equations. In total, …


Fast Multiscale Functional Estimation In Optimal Emg Placement For Robotic Prosthesis Controllers, Jin Ren, Guohui Song, Lucia Tabacu, Yuesheng Xu Jan 2023

Fast Multiscale Functional Estimation In Optimal Emg Placement For Robotic Prosthesis Controllers, Jin Ren, Guohui Song, Lucia Tabacu, Yuesheng Xu

Mathematics & Statistics Faculty Publications

Electromyogram (EMG) signals play a significant role in decoding muscle contraction information for robotic hand prosthesis controllers. Widely applied decoders require a large amount of EMG signals sensors, resulting in complicated calculations and unsatisfactory predictions. By the biomechanical process of single degree-of-freedom human hand movements, only several EMG signals are essential for accurate predictions. Recently, a novel predictor of hand movements adopted a multistage sequential adaptive functional estimation (SAFE) method based on the historical functional linear model (FLM) to select important EMG signals and provide precise projections.

However, SAFE repeatedly performs matrix-vector multiplications with a dense representation matrix of the …


Apt Adversarial Defence Mechanism For Industrial Iot Enabled Cyber-Physical System, Safdar Hussain Javed, Maaz Bin Ahmad, Muhammad Asif, Waseem Akram, Khalid Mahmood, Ashok Kumar Das, Sachin Shetty Jan 2023

Apt Adversarial Defence Mechanism For Industrial Iot Enabled Cyber-Physical System, Safdar Hussain Javed, Maaz Bin Ahmad, Muhammad Asif, Waseem Akram, Khalid Mahmood, Ashok Kumar Das, Sachin Shetty

VMASC Publications

The objective of Advanced Persistent Threat (APT) attacks is to exploit Cyber-Physical Systems (CPSs) in combination with the Industrial Internet of Things (I-IoT) by using fast attack methods. Machine learning (ML) techniques have shown potential in identifying APT attacks in autonomous and malware detection systems. However, detecting hidden APT attacks in the I-IoT-enabled CPS domain and achieving real-time accuracy in detection present significant challenges for these techniques. To overcome these issues, a new approach is suggested that is based on the Graph Attention Network (GAN), a multi-dimensional algorithm that captures behavioral features along with the relevant information that other methods …