Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Gpu Utilization: Predictive Sarimax Time Series Analysis, Dorothy Dorie Parry Apr 2023

Gpu Utilization: Predictive Sarimax Time Series Analysis, Dorothy Dorie Parry

Modeling, Simulation and Visualization Student Capstone Conference

This work explores collecting performance metrics and leveraging the output for prediction on a memory-intensive parallel image classification algorithm - Inception v3 (or "Inception3"). Experimental results were collected by nvidia-smi on a computational node DGX-1, equipped with eight Tesla V100 Graphic Processing Units (GPUs). Time series analysis was performed on the GPU utilization data taken, for multiple runs, of Inception3’s image classification algorithm (see Figure 1). The time series model applied was Seasonal Autoregressive Integrated Moving Average Exogenous (SARIMAX).


The Effectiveness Of Visualization Techniques For Supporting Decision-Making, Cansu Yalim, Holly A. H. Handley Apr 2023

The Effectiveness Of Visualization Techniques For Supporting Decision-Making, Cansu Yalim, Holly A. H. Handley

Modeling, Simulation and Visualization Student Capstone Conference

Although visualization is beneficial for evaluating and communicating data, the efficiency of various visualization approaches for different data types is not always evident. This research aims to address this issue by investigating the usefulness of several visualization techniques for various data kinds, including continuous, categorical, and time-series data. The qualitative appraisal of each technique's strengths, weaknesses, and interpretation of the dataset is investigated. The research questions include: which visualization approaches perform best for different data types, and what factors impact their usefulness? The absence of clear directions for both researchers and practitioners on how to identify the most effective visualization …


Statistical Approach To Quantifying Interceptability Of Interaction Scenarios For Testing Autonomous Surface Vessels, Benjamin E. Hargis, Yiannis E. Papelis Apr 2023

Statistical Approach To Quantifying Interceptability Of Interaction Scenarios For Testing Autonomous Surface Vessels, Benjamin E. Hargis, Yiannis E. Papelis

Modeling, Simulation and Visualization Student Capstone Conference

This paper presents a probabilistic approach to quantifying interceptability of an interaction scenario designed to test collision avoidance of autonomous navigation algorithms. Interceptability is one of many measures to determine the complexity or difficulty of an interaction scenario. This approach uses a combined probability model of capability and intent to create a predicted position probability map for the system under test. Then, intercept-ability is quantified by determining the overlap between the system under test probability map and the intruder’s capability model. The approach is general; however, a demonstration is provided using kinematic capability models and an odometry-based intent model.