Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics

Dartmouth Scholarship

Quantum physics

Articles 31 - 40 of 40

Full-Text Articles in Physical Sciences and Mathematics

Quantum Analysis Of A Nonlinear Microwave Cavity-Embedded Dc Squid Displacement Detector, P. D. Nation, M. P. Blencowe, E. Buks Sep 2008

Quantum Analysis Of A Nonlinear Microwave Cavity-Embedded Dc Squid Displacement Detector, P. D. Nation, M. P. Blencowe, E. Buks

Dartmouth Scholarship

We carry out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector, comprising a SQUID with mechanically compliant loop segment, which is embedded in a microwave transmission line resonator. The SQUID is approximated as a nonlinear current-dependent inductance, inducing an external flux tunable nonlinear Duffing self-interaction term in the microwave resonator mode equation. Motion of the compliant SQUID loop segment is transduced inductively through changes in the external flux threading SQUID loop, giving a ponderomotive radiation pressure-type coupling between the microwave and mechanical resonator modes. Expressions are derived for the detector signal response and noise, …


Advantages Of Randomization In Coherent Quantum Dynamical Control, Lea F. Santos, Lorenza Viola Aug 2008

Advantages Of Randomization In Coherent Quantum Dynamical Control, Lea F. Santos, Lorenza Viola

Dartmouth Scholarship

Control scenarios have been identified where the use of randomized design may substantially improve the performance of dynamical decoupling methods (Santos and Viola 2006 Phys. Rev. Lett. 97 150501). Here, by focusing on the suppression of internal unwanted interactions in closed quantum systems, we review and further elaborate on the advantages of randomization at long evolution times. By way of illustration, special emphasis is devoted to isolated Heisenberg chains of coupled spin-1/2 particles. In particular, for nearest-neighbor interactions, two types of decoupling cycles are contrasted: inefficient averaging, whereby the number of control actions increases exponentially with the system size, and …


Quantum Pseudorandomness From Cluster-State Quantum Computation, Winton G. Brown, Yaakov S. Weinstein, Lorenza Viola Apr 2008

Quantum Pseudorandomness From Cluster-State Quantum Computation, Winton G. Brown, Yaakov S. Weinstein, Lorenza Viola

Dartmouth Scholarship

We show how to efficiently generate pseudorandom states suitable for quantum information processing via cluster-state quantum computation. By reformulating pseudorandom algorithms in the cluster-state picture, we identify a strategy for optimizing pseudorandom circuits by properly choosing single-qubit rotations. A Markov chain analysis provides the tool for analyzing convergence rates to the Haar measure and finding the optimal single-qubit gate distribution. Our results may be viewed as an alternative construction of approximate unitary 2-designs.


Quantum Analysis Of A Linear Dc Squid Mechanical Displacement Detector, M. P. Blencowe, E. Buks Jul 2007

Quantum Analysis Of A Linear Dc Squid Mechanical Displacement Detector, M. P. Blencowe, E. Buks

Dartmouth Scholarship

We provide a quantum analysis of a dc SQUID mechanical displacement detector within the subcritical Josephson current regime. A segment of the SQUID loop forms the mechanical resonator and motion of the latter is transduced inductively through changes in the flux threading the loop. Expressions are derived for the detector signal response and noise, which are used to evaluate the position and force detection sensitivity. We also investigate cooling of the mechanical resonator due to detector back reaction.


Decoherence And Recoherence In A Vibrating Rf Squid, Eyal Buks, M. P. Blencowe Nov 2006

Decoherence And Recoherence In A Vibrating Rf Squid, Eyal Buks, M. P. Blencowe

Dartmouth Scholarship

We study an rf SQUID, in which a section of the loop is a freely suspended beam that is allowed to oscillate mechanically. The coupling between the rf SQUID and the mechanical resonator originates from the dependence of the total magnetic flux threading the loop on the displacement of the resonator. Motion of the latter affects the visibility of Rabi oscillations between the two lowest energy states of the rf SQUID. We address the feasibility of experimental observation of decoherence and recoherence, namely decay and rise of the visibility, in such a system.


Casimir Forces And Non-Newtonian Gravitation, Roberto Onofrio Oct 2006

Casimir Forces And Non-Newtonian Gravitation, Roberto Onofrio

Dartmouth Scholarship

The search for non-relativistic deviations from Newtonian gravitation can lead to new phenomena signalling the unification of gravity with the other fundamental interactions. Various recent theoretical frameworks indicate a possible window for non-Newtonian forces with gravitational coupling strength in the micrometre range. The major expected background in the same range is attributable to the Casimir force or variants of it if dielectric materials, rather than conducting ones, are considered. Here we review the measurements of the Casimir force performed so far in the micrometre range and how they determine constraints on non-Newtonian gravitation, also discussing the dominant sources of false …


Generalized Entanglement As A Natural Framework For Exploring Quantum Chaos, Y. S. Weinstein, L Viola Oct 2006

Generalized Entanglement As A Natural Framework For Exploring Quantum Chaos, Y. S. Weinstein, L Viola

Dartmouth Scholarship

We demonstrate that generalized entanglement (Barnum et al., Phys. Rev. A, 68 (2003) 032308) provides a natural and reliable indicator of quantum chaotic behavior. Since generalized entanglement depends directly on a choice of preferred observables, exploring how generalized entanglement increases under dynamical evolution is possible without invoking an auxiliary coupled system or decomposing the system into arbitrary subsystems. We find that, in the chaotic regime, the long-time saturation value of generalized entanglement agrees with random matrix theory predictions. For our system, we provide physical intuition into generalized entanglement within a single system by invoking the notion of extent …


Enhanced Convergence And Robust Performance Of Randomized Dynamical Decoupling, Lea F. Santos, Lorenza Viola Oct 2006

Enhanced Convergence And Robust Performance Of Randomized Dynamical Decoupling, Lea F. Santos, Lorenza Viola

Dartmouth Scholarship

We demonstrate the advantages of randomization in coherent quantum dynamical control. For systems which are either time-varying or require decoupling cycles involving a large number of operations, we find that simple randomized protocols offer superior convergence and stability as compared to deterministic counterparts. In addition, we show how randomization may allow us to outperform purely deterministic schemes at long times, including combinatorial and concatenated methods. General criteria for optimally interpolating between deterministic and stochastic design are proposed and illustrated in explicit decoupling scenarios relevant to quantum information storage.


Dynamics Of A Nanomechanical Resonator Coupled To A Superconducting Single-Electron Transistor, M. P. Blencowe, J. Imbers, A. D. Armour Nov 2005

Dynamics Of A Nanomechanical Resonator Coupled To A Superconducting Single-Electron Transistor, M. P. Blencowe, J. Imbers, A. D. Armour

Dartmouth Scholarship

We present an analysis of the dynamics of a nanomechanical resonator coupled to a superconducting single-electron transistor (SSET) in the vicinity of Josephson quasi-particle (JQP) and double Josephson quasi-particle (DJQP) resonances. For weak coupling and wide separation of dynamical timescales, we find that for either superconducting resonances the dynamics of the resonator are given by a Fokker–Planck equation, i.e. the SSET behaves effectively as an equilibrium heat bath, characterized by an effective temperature, which also damps the resonator and renormalizes its frequency. Depending on the gate and drain–source voltage bias points with respect to the superconducting resonance, the SSET can …


Casimir Force Between Eccentric Cylinders, D. A. R. Dalvit, F. C. Lombardo, F. D D. Mazzitelli, R Onofrio Aug 2004

Casimir Force Between Eccentric Cylinders, D. A. R. Dalvit, F. C. Lombardo, F. D D. Mazzitelli, R Onofrio

Dartmouth Scholarship

We consider the Casimir interaction between a cylinder and a hollow cylinder, both conducting, with parallel axis and slightly different radii. The Casimir force, which vanishes in the coaxial situation, is evaluated for both small and large eccentricities using the proximity approximation. The cylindrical configuration offers various experimental advantages with respect to the parallel planes or the plane-sphere geometries, leading to favourable conditions for the search of extra-gravitational forces in the micrometer range and for the observation of finite-temperature corrections.