Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 61 - 76 of 76

Full-Text Articles in Physical Sciences and Mathematics

Neutron Scintillation Detectors Based On Polymers Containing Lithium-6 For Radiation Portal Monitor Applications, Andrew Neil Mabe Aug 2013

Neutron Scintillation Detectors Based On Polymers Containing Lithium-6 For Radiation Portal Monitor Applications, Andrew Neil Mabe

Doctoral Dissertations

The work presented herein describes an investigation of four main types of thin film polymer scintillators containing 6Li [lithium-6] for neutron detection: polystyrene containing 6LiF [lithium-6 fluoride] and a preblended fluor mixture comprising 2,5-diphenyloxazole and 1,4-bis(5-phenyloxazol-2-yl)benzene; poly(styrene-co-lithium maleate) containing salicylic acid; poly[styrene-co-lithium maleate-co-2-phenyl-5-(4-vinylphenyl)oxazole]; and poly(styrene-co-lithium 4-vinylbenzoate). A variety of chemical and physical characterizations as well as optical and scintillation characterizations were performed to guide the development of optimized compositions of each type of polymer film. The scintillation performances of optimized compositions of each type of polymer film were calibrated using …


Tuning Sol-Gel Phase Diagrams Of Doubly Thermosensitive Hydrophilic Diblock Copolymers In Water, Naixiong Jin May 2013

Tuning Sol-Gel Phase Diagrams Of Doubly Thermosensitive Hydrophilic Diblock Copolymers In Water, Naixiong Jin

Doctoral Dissertations

This dissertation presents the synthesis of stimuli-responsive hydrophilic diblock copolymers and the study of their behavior in water under various conditions. The polymers were made by “living”/controlled radical polymerization. Chapter 1 presents a background of this dissertation. Chapters 2-4 describe a family of doubly thermosensitive diblock copolymers with a small amount of carboxylic acid groups incorporated into either one or both blocks. The lower critical solution temperature (LCST) of the weak acid-containing block increases with increasing pH due to the ionization of carboxylic acid. Chapter 5 presents the preparation of pH-sensitive diblock copolymer micelle-embedded agarose hydrogels.

Chapter 2 describes the …


Synthesis And Characterization Of Stimuli Responsive Polymer Brushes, Chaitra Vasant Deodhar May 2013

Synthesis And Characterization Of Stimuli Responsive Polymer Brushes, Chaitra Vasant Deodhar

Doctoral Dissertations

Polyelectrolytes (PE) are the least understood polymeric systems due to their complex behavior that arises because of the intimate connection between charge and conformation. To address this challenge, my research focuses on understanding the responsive behavior of weak polyelectrolyte brushes to different stimuli such as pH, type of ion and ionic strength. In this work, weak polyelectrolyte brushes made of poly(methacrylic acid) (PMAA) and random copolymer brushes incorporating hydroxyethyl methacrylate (HEMA) as co-monomer were studied. The polymer brushes were synthesized by both “grafting to” and “grafting from” approaches and were characterized mainly by ellipsometry and neutron reflectometry.

Several methods for …


Synthesis, Characterization, And Functionalization Of 2-Vinyl-4,4-Dimethylazlactone Brushes To Create Bio-Inspired Materials, Camille Marie Kite Dec 2012

Synthesis, Characterization, And Functionalization Of 2-Vinyl-4,4-Dimethylazlactone Brushes To Create Bio-Inspired Materials, Camille Marie Kite

Masters Theses

Functional materials built from polymer scaffolds inspire many potential uses, including as biomaterial surfaces or sensors. In situ functionalization using well-defined polymer “brushes” made by tethering polymer chains to a surface by one of their ends is explored. Specifically, poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) chains, which contain a reactive azlactone ring at each repeat unit, are tethered to a surface to create brushes and these films are functionalized using a variety of small molecules, primarily amines or peptides. Relationships between polymer brush thickness, size of the functionalizing molecule, solution concentration, reaction time, and extent of functionalization were determined through measurements of brush thickness …


Understanding The Thermodynamic Behavior Of Nanoparticles To Tailor Polymer Nancomposite Structure, Mary Catherine Mutz Aug 2012

Understanding The Thermodynamic Behavior Of Nanoparticles To Tailor Polymer Nancomposite Structure, Mary Catherine Mutz

Doctoral Dissertations

The work presented in this dissertation is an attempt to understand the entropic and enthalpic forces that govern the dispersion and dissolution of nanoparticles in solutions and in thin polymer films with the end-goal of producing highly tailored products.

In the first part, neutron reflectivity was used to study the impact of nanoparticle presence on the surface segregation of deuterated polystyrene (dPS) in a polystyrene matrix. The impact of the presence of cylinders (carbon nanotubes), sheets (graphene), and spheres (polystyrene soft nanoparticles) on the surface segregation process and ultimate structure were examined. Experimental data indicate that the presence of the …


Synthesis And Temperature-Induced Phase Transfer Behavior Of Thermosensitive Hairy Particles Between Aqueous Solution And A Hydrophobic Ionic Liquid, Jonathan Michael Horton Aug 2012

Synthesis And Temperature-Induced Phase Transfer Behavior Of Thermosensitive Hairy Particles Between Aqueous Solution And A Hydrophobic Ionic Liquid, Jonathan Michael Horton

Doctoral Dissertations

This dissertation presents the synthesis of a family of thermosensitive polymer brush-grafted silica particles and the study of their thermally induced phase transfer behavior between water and a hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMIM][TFSA]). The hairy particles were prepared by surface-initiated atom transfer radical polymerization.

Chapter 1 describes the synthesis and phase transfer behavior of a series of 205 nm silica particles grafted with thermosensitive polymers of methoxyoligo(ethylene glycol) methacrylates. The hairy particles with sufficiently high lower critical solution temperatures underwent reversible and quantitative transfer between water and [EMIM][TFSA] in response to temperature changes. The transfer temperature (Ttr …


The Role Of Non-Bonding Interactions And Bonding Schemes In The Structure And Properties Of Multi-Component Polymer Systems, Caleb Will Dyer Aug 2012

The Role Of Non-Bonding Interactions And Bonding Schemes In The Structure And Properties Of Multi-Component Polymer Systems, Caleb Will Dyer

Doctoral Dissertations

This dissertation addresses three aspects of multi-component polymer systems. Chapter 2 details work on understanding the effect of precise polymeric structure on the phase behavior of blends containing cellulose acetate chains with different levels of acetate substitution. The difference in degree substitution (Delta DS) between the two components in the blend is systematically changed from .06 to .63, where each blend is found to be partially miscible. The samples containing higher acetate content demonstrate decreased miscibility as Delta DS increases. The sample with the most hydroxyl groups, however, has greater miscibility than samples of similar Delta DS, but fewer hydroxyl …


Synthesis, Characterization And Self-Assembly Of Amphiphilic Block Copolymers, Xiaojun Wang May 2012

Synthesis, Characterization And Self-Assembly Of Amphiphilic Block Copolymers, Xiaojun Wang

Doctoral Dissertations

This dissertation presents a review on state-of-the-art research of well-defined charged block copolymers, including synthesis, characterization, bulk morphology and self-assembly in aqueous solution of amphiphilic block polyelectrolytes. In Chapter 1, as a general introduction, experimental observations and theoretical calculations devoted towards understanding morphological behavior in charged block copolymer systems are reviewed along with some of the new emerging research directions. Further investigation of charged systems is urged in order to fully understand their morphological behavior and to directly target structures for the tremendous potential in technological applications. Following this background, in Chapters 2, 3, 4 and 5 are presented the …


Polymer Nanocomposite Analysis And Optimization For Renewable Energy And Materials, Nathan Walter Henry Dec 2011

Polymer Nanocomposite Analysis And Optimization For Renewable Energy And Materials, Nathan Walter Henry

Doctoral Dissertations

Polymer nanocomposites are an important research interest in the area of engineering and functional materials, including the search for more environmentally materials for renewable energy and materials. The ability to analyze and optimize morphology is crucial to realizing their potential, since the distribution of materials in the composite strongly influences its properties. This dissertation presents research into three different polymer nanocomposite systems with three different applications that underscore the need to understand and control the composite morphology to succeed.

The first project details work on development of a copolymer compatibilizer to enhance the dispersion of the plant-derived biopolymer lignin in …


Thermo- And Ph-Sensitive Hydrophilic Block Copolymers: Synthesis, Micellization, Gelation, And Application, Thomas G. O'Lenick May 2011

Thermo- And Ph-Sensitive Hydrophilic Block Copolymers: Synthesis, Micellization, Gelation, And Application, Thomas G. O'Lenick

Doctoral Dissertations

This dissertation presents the synthesis of a series of thermo- and pH-sensitive hydrophilic block copolymers and the study of their solution behavior in water. By incorporating a small amount of weak acid or base groups into the thermosensitive block(s) of a hydrophilic block copolymer, the LCST of the thermosensitive block(s) can be modified by changing the solution pH. Accordingly, the critical micellization temperature (CMT) and the sol-gel transition temperature (Tsol-gel) of the block copolymer in water can be tuned. Chapter 1 describes the synthesis of thermo- and pH-sensitive poly(methoxydi(ethylene glycol) methacrylate-co-methacrylic acid)-b-PEO-bpoly( methoxydi(ethylene glycol) methacrylate co-methacrylic acid) and the study …


Thermo- And Ph-Sensitive Aqueous Micellar Gels Form A Tertiary Amine-Containing Hydrophilic Aba Triblock Copolymer, Roger A. E. Wright May 2011

Thermo- And Ph-Sensitive Aqueous Micellar Gels Form A Tertiary Amine-Containing Hydrophilic Aba Triblock Copolymer, Roger A. E. Wright

Chancellor’s Honors Program Projects

No abstract provided.


The Importance Of Chain Connectivity In The Formation Of Non-Covalent Interactions Between Polymers And Single-Walled Carbon Nanotubes And Its Impact On Dispersion, Dias Linton Dec 2010

The Importance Of Chain Connectivity In The Formation Of Non-Covalent Interactions Between Polymers And Single-Walled Carbon Nanotubes And Its Impact On Dispersion, Dias Linton

Doctoral Dissertations

Polymer nanocomposites have garnered incredible promise in the field of material science due to the excellent mechanical strength, thermal and electrical conductivities of the nanoparticles and the extension of these properties to the processing flexibility inherent to plastics. However, practical realization of these nanoparticle-based materials has been hindered by the tendency of these nanoparticles to aggregate as a result of strong inter-particle forces. In this dissertation, we investigate the formation of non-covalent charge transfer interactions between polymers and single-walled carbon nanotubes (SWNTs) with the goal of optimizing interfacial adhesion and homogeneity of nanocomposites without modifying the SWNT native surface.

Nanocomposites …


The Impact Of Non-Covalent Interactions On The Dispersion Of Fullerenes And Graphene In Polymers, Say Lee Teh Dec 2010

The Impact Of Non-Covalent Interactions On The Dispersion Of Fullerenes And Graphene In Polymers, Say Lee Teh

Masters Theses

The work presented in this dissertation attempts to form an understanding of the importance of polymer connectivity and nanoparticle shape and curvature on the formation of non-covalent interactions between polymer and nanoparticles by monitoring the dispersion of nanoparticles in copolymers containing functionalities that can form non-covalent interactions with carbon nanoparticles.

The first portion of this study is to gain a fundamental understanding of the role of electron donating/withdrawing moieties on the dispersion of the fullerenes in copolymers. UV- Vis spectroscopy and x-ray diffraction were used to quantify the miscibility limit of C60 fullerene with the incorporation of electron donor-acceptor interactions …


Polymeric Loop Formation At Hard And Soft Interfaces, Earl Ashcraft Aug 2010

Polymeric Loop Formation At Hard And Soft Interfaces, Earl Ashcraft

Doctoral Dissertations

Copolymers are used to increase the interfacial strength of immiscible components and suppress recombination of the minor phase by steric hindrance. The experiments conducted in these studies are designed to investigate in situ polymer loop formation at soft interfaces and functionalized nanotube surfaces. Block copolymers are the most effective type of copolymer for compatibilization because they extend perpendicular to the interface, allowing good entanglement with the homopolymer chains. Multiblock copolymers are more effective than diblock copolymers for strengthening the interface because they can cross the interface multiple times, forming “loops” in each phase that provide entanglement points for the homopolymer. …


Supported Aqueous-Phase Catalysis For Atom Transfer Radical Polymerization, Ravi Aggarwal Aug 2010

Supported Aqueous-Phase Catalysis For Atom Transfer Radical Polymerization, Ravi Aggarwal

Doctoral Dissertations

Atom transfer radical polymerization (ATRP) which utilizes transition metal based catalysts is a versatile methodology for the synthesis of a wide spectrum of polymers with controlled architectures. However, high concentrations of soluble catalyst required in an ATRP process makes the final polymer colored and toxic. Thus, the catalyst removal/reduction/recycling remains a challenge in the field of ATRP. Supported catalysts on insoluble solids such as silica gel, polystyrene beads, etc. have been used in ATRP to facilitate the catalyst recovery and recycling. However, the ability of the supported catalysts to mediate a polymerization is substantially reduced due to their reduced mobility …


Hairy Particles: Polymer Brush-Supported Organocatalysts And Asymmetric Mixed Homopolymer Brushes, Xiaoming Jiang Aug 2010

Hairy Particles: Polymer Brush-Supported Organocatalysts And Asymmetric Mixed Homopolymer Brushes, Xiaoming Jiang

Doctoral Dissertations

This dissertation presents the synthesis and studies of polymer brush-supported organocatalysts and asymmetric mixed homopolymer brushes grafted on particles. The brushes were synthesized from initiator-functionalized particles by surface-initiated “living” radical polymerizations.

Polymer brush-supported organocatalysts were designed to combine the advantages of both soluble polymer- (high activity) and crosslinked insoluble polymer-supported catalysts (recyclability). Chapter 1 describes the synthesis of a polymer brush-supported 4-N,N-dialkylaminopyridine (DAAP) catalyst from initiator-functionalized latex particles by surface-initiated nitroxide-mediated radical polymerization (NMRP). The hairy particles efficiently catalyzed the acylation of secondary alcohols and Baylis-Hillman reaction and were recycled  six times with no or negligible decrease in the …