Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Series

Radiation

Institution
Publication Year
Publication

Articles 31 - 47 of 47

Full-Text Articles in Physical Sciences and Mathematics

The Effect Of Genetic Background And Dose On Non-Targeted Effects Of Radiation, Sarah Irons, Virginia Sierra, Deborah Bowler, Kim Chapman, Stefania Militi, Fiona Lyng, Munira Kadhim Oct 2012

The Effect Of Genetic Background And Dose On Non-Targeted Effects Of Radiation, Sarah Irons, Virginia Sierra, Deborah Bowler, Kim Chapman, Stefania Militi, Fiona Lyng, Munira Kadhim

Articles

Purpose: This work investigates the hypothesis that genetic background plays a significant role in the signalling mechanisms underlying induction and perpetuation of genomic instability following radiation exposure.

Materials and methods: Bone marrow from two strains of mice (CBA and C57) were exposed to a range of X-ray doses (0, 0.01, 0.1, 1 and 3 Gy). Different cellular signalling endpoints: Apoptosis, cytokine levels and calcium flux, were evaluated at 2 h, 24 h and 7 d post-irradiation to assess immediate and delayed effects.

Results: In CBA (radiosensitive) elevated apoptosis levels were observed at 24 h post X-irradiation, and …


In Memoriam: Robert Katz (1917–2011), M. P. R. Waligorski, Francis A. Cucinotta Jan 2011

In Memoriam: Robert Katz (1917–2011), M. P. R. Waligorski, Francis A. Cucinotta

Robert Katz Publications

Bob Katz will be well remembered for his enthusiasm and strong personality. In a scientific dispute, few indeed could match his wit or his sense of humor or survive the cutting logic of his arguments. To those who had appreciation for his science and his personality, he was truly a great scientist and a master teacher. There are many people around the world who will remember Bob Katz for what he offered them and for the way he showed them what truth in science is.

The Katz Model, developed at that time for solid-state detectors and for cell cultures, relates …


The Effects Of Radiation And Low Temperatures On Optical Fibers, Nnadozie Tassie Jan 2011

The Effects Of Radiation And Low Temperatures On Optical Fibers, Nnadozie Tassie

Journal of Undergraduate Research

My research seeks to identify optical fibers capable of operating in an environment with radiation and low temperatures. This study is for an international detector R&D project which is for the high luminosity upgrade of the Large Hadron Collider (LHC) at CERN, Switzerland. In high energy particle physics experiments, silicon pixel detectors, often called inner trackers, are used to precisely measure the trajectories of charged particles. The Inner Trackers for both the ATLAS and the CMS, two of the four large experiments at the LHC, operate in high radiation environment and in an ambient temperature of -20 to -30°C to …


Gcr Access To The Moon As Measured By The Crater Instrument On Lro, A. W. Case, Harlan E. Spence, M. J. Golightly, J. C. Kasper, J. B. Blake, J. E. Mazur, L. W. Townsend, C. J. Zeitlin Oct 2010

Gcr Access To The Moon As Measured By The Crater Instrument On Lro, A. W. Case, Harlan E. Spence, M. J. Golightly, J. C. Kasper, J. B. Blake, J. E. Mazur, L. W. Townsend, C. J. Zeitlin

Physics & Astronomy

[1] Recent modeling efforts have yielded varying and conflicting results regarding the possibility that Earth's magnetosphere is able to shield energetic particles of >10 MeV at lunar distances. This population of particles consists of galactic cosmic rays as well as energetic particles that are accelerated by solar flares and coronal mass ejections. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter is in orbit about the Moon and is thus able to directly test these modeling results. Over the course of a month, CRaTER samples the upstream solar wind as well as various regions …


Galactic Cosmic Ray Radiation Hazard In The Unusual Extended Solar Minimum Between Solar Cycles 23 And 24, Nathan A. Schwadron, A. J. Boyd, K. Kozarev, M. Golightly, Harlan E. Spence, L. W. Townsend, M. Owens May 2010

Galactic Cosmic Ray Radiation Hazard In The Unusual Extended Solar Minimum Between Solar Cycles 23 And 24, Nathan A. Schwadron, A. J. Boyd, K. Kozarev, M. Golightly, Harlan E. Spence, L. W. Townsend, M. Owens

Physics & Astronomy

[1] Galactic cosmic rays (GCRs) are extremely difficult to shield against and pose one of the most severe long-term hazards for human exploration of space. The recent solar minimum between solar cycles 23 and 24 shows a prolonged period of reduced solar activity and low interplanetary magnetic field strengths. As a result, the modulation of GCRs is very weak, and the fluxes of GCRs are near their highest levels in the last 25 years in the fall of 2009. Here we explore the dose rates of GCRs in the current prolonged solar minimum and make predictions for the Lunar Reconnaissance …


Metal-Induced Bystander Effects: Mechanism And Implicationis., Nicola Cogan Sep 2009

Metal-Induced Bystander Effects: Mechanism And Implicationis., Nicola Cogan

Doctoral

The radiation-induced bystander effect is a phenomenon known to occur post irradiation, characterised by the induction of biological effects in unirradiated cells as a result of receiving signals from irradiated cells or their culture medium. Chemicalinduced bystander effects are poorly characterised and there are no reports of a bystander effect induced by metals. Heavy metals and in particular chromium (VI) are known to cause persistent genomic instability. For the first time, this study provides evidence that a short, low-dose exposure of human fibroblasts to chromium (VI) causes a bystander effect in human fibroblasts that persists for at least thirty days …


Comment On "On The Theory Of Nuclear Resonant Forward Scattering Of Synchrotron Radiation", Gilbert R. Hoy, Jos Odeurs Jan 2009

Comment On "On The Theory Of Nuclear Resonant Forward Scattering Of Synchrotron Radiation", Gilbert R. Hoy, Jos Odeurs

Physics Faculty Publications

Recently, in a paper by Kohn and Smirnov, a formula previously derived by Kagan et al. was developed to explain the forward scattering of gamma radiation by a nuclear-resonant sample excited by pulsed synchrotron radiation. Their derivation followed, directly, a procedure developed by Heitler, Harris, and Hoy. Previously, a completely different formula was developed by Hoy et al. to explain the same process. As a result, Kohn and Smirnov discuss the correctness and validity of the two models. In this Comment a detailed numerical comparison of the two theories has also been made. It is shown that their comparison is …


Effects Of Htert On Genomic Instability Caused By Either Metals Or Radiation Or Combined Exposure, Antonino Glaviano Jul 2007

Effects Of Htert On Genomic Instability Caused By Either Metals Or Radiation Or Combined Exposure, Antonino Glaviano

Doctoral

There is currently a great interest in delayed chromosomal damage and other damaging effects of low-dose exposure to a variety of agents, which appear collectively to act through induction of stress-response pathways related to oxidative stress (and aging). These agents have been studied mostly in the radiation field but evidence is accumulating that chemicals, especially heavy metals, can also act in the same manner. Therefore, this work investigated the effects of metals and/or radiation in human fibroblasts in vitro. Humans are exposed to metals, including chromium (CR) VI) and vanadium (V) (V) from the environment, industry and surgical implants. Thus …


Radiative Electron Capture Into High- Z Few-Electron Ions: Alignment Of The Excited Ionic States, Andrey S. Surzhykov, Ulrich D. Jentschura, Th H. Stohlker, Stephan Fritzsche Mar 2006

Radiative Electron Capture Into High- Z Few-Electron Ions: Alignment Of The Excited Ionic States, Andrey S. Surzhykov, Ulrich D. Jentschura, Th H. Stohlker, Stephan Fritzsche

Physics Faculty Research & Creative Works

We lay out a unified formalism for the description of radiative electron capture into excited states of heavy, few-electron ions and their subsequent decay, including a full account of many-electron effects and higher-order multipoles of the radiation field. In particular, the density-matrix theory is applied to explore the magnetic sublevel population of the residual ions, as described in terms of alignment parameters. For the electron capture into the initially hydrogenlike U91+ and lithiumlike U89+ uranium projectiles, the alignment parameters are calculated, within the multiconfiguration Dirac-Fock approach, as a function of the collision energy and for different ionic states. …


Progress Towards Terahertz Acoustic Phonon Generation In Doping Superlattices, Thomas E. Wilson Nov 2005

Progress Towards Terahertz Acoustic Phonon Generation In Doping Superlattices, Thomas E. Wilson

Physics Faculty Research

Progress is described in experiments to generate coherent terahertz acoustic phonons in silicon doping superlattices by the resonant absorption of nanosecond-pulsed far-infrared laser radiation. Future experiments are proposed that would use the superlattice as a transducer in a terahertz cryogenic acoustic reflection microscope with sub-nanometer resolution.


Progress Towards Terahertz Acoustic Phonon Generation In Doping Superlattices, Thomas E. Wilson Oct 2005

Progress Towards Terahertz Acoustic Phonon Generation In Doping Superlattices, Thomas E. Wilson

Physics Faculty Research

Progress is described in experiments to generate coherent terahertz acoustic phonons in silicon doping superlattices by the resonant absorption of nanosecond-pulsed far-infrared laser radiation. Future experiments are proposed that would use the superlattice as a transducer in a terahertz cryogenic acoustic reflection microscope with sub-nanometer resolution.


Advances In Space Radiation Shielding Codes, John W. Wilson, Ram K. Tripathi, Garry D. Qualls, Francis A. Cucinotta, Richard E. Prael, John W. Norbury, John H. Heinbockel, John Tweed, Giovanni De Angelis Jan 2002

Advances In Space Radiation Shielding Codes, John W. Wilson, Ram K. Tripathi, Garry D. Qualls, Francis A. Cucinotta, Richard E. Prael, John W. Norbury, John H. Heinbockel, John Tweed, Giovanni De Angelis

Mathematics & Statistics Faculty Publications

Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from …


Gamma Echo Interpreted As A Phase-Shift Induced Transparency, Gilbert R. Hoy, Jos Odeurs Jan 2001

Gamma Echo Interpreted As A Phase-Shift Induced Transparency, Gilbert R. Hoy, Jos Odeurs

Physics Faculty Publications

In the gamma-echo technique a radioactive source is moved, with respect to a nuclear-resonant absorber, during the lifetime of first-excited nuclear state. This introduces a phase shift between the source radiation and the radiation from the absorber. If the source is moved abruptly, introducing a pi phase shift, the time-dependent intensity shows a sharp increase in the intensity at that time, the "gamma echo." Using the recently developed one-dimensional quantum-mechanical model, based on the technique developed by Heitler and Harris, the gamma-echo effect is seen to be a phase-shift-induced transparency. A closed-form solution for the time-dependent transmitted intensity has been …


Exposure To Atmospheric Radon, Daniel J. Steck, R. William Field, Charles F. Lynch Feb 1999

Exposure To Atmospheric Radon, Daniel J. Steck, R. William Field, Charles F. Lynch

Physics Faculty Publications

We measured radon (222Rn) concentrations in Iowa and Minnesota and found that unusually high annual average radon concentrations occur outdoors in portions of central North America. In some areas, outdoor concentrations exceed the national average indoor radon concentration. The general spatial patterns of outdoor radon and indoor radon are similar to the spatial distribution of radon progeny in the soil. Outdoor radon exposure in this region can be a substantial fraction of an individual's total radon exposure and is highly variable across the population. Estimated lifetime effective dose equivalents for the women participants in a radon-related lung cancer …


Performance Of An Inertially Coupled, 3-Mode Gravitational-Wave Antenna Prototype, Linda E. Marchese, Mark F. Bocko, Guizhen Zhang, Munawar Karim Aug 1994

Performance Of An Inertially Coupled, 3-Mode Gravitational-Wave Antenna Prototype, Linda E. Marchese, Mark F. Bocko, Guizhen Zhang, Munawar Karim

Physics Faculty/Staff Publications

A prototype three‐mode gravitational wave antenna which employs a two‐mode torsional transducer has been constructed and tested. For the torsional transducer the coupling from one stage to the next is via inertial forces, whereas in a conventional transducer the stage‐to‐stage coupling is proportional to the relative displacements via the springs. Experiments with our antenna‐torsional transducer prototype demonstrate a maximum antenna bandwidth of 260 Hz (29% of the antenna resonant frequency of 900 Hz) and a mechanical amplification factor of 40. A mathematical model for the three‐mode antenna has been developed and predictions of the system transfer functions and transient response …


Primary Relaxation Processes At The Band Edge Of Sio₂, Peter N. Saeta, Benjamin I. Greene Jun 1993

Primary Relaxation Processes At The Band Edge Of Sio₂, Peter N. Saeta, Benjamin I. Greene

All HMC Faculty Publications and Research

The kinetics of photoinduced defect formation in high-purity silicas has been studied by femtosecond transient absorption spectroscopy in the visible and ultraviolet. Band edge two-photon excitation produces singlet excitons which decay in 0.25 ps into defects with the absorption spectra of nonbridging oxygen hole centers (≡Si-O⋅) and silicon E’ centers (≡Si⋅). We identify these defect pairs with the self-trapped triplet exciton and the 0.25 ps decay with the motion of the photoexcited oxygen atom. Similar results were obtained with both crystalline and amorphous silica samples.


The Effect Of Ionizing And Displacive Radiation On The Thermal Conductivity Of Alumina, D. P. White Apr 1993

The Effect Of Ionizing And Displacive Radiation On The Thermal Conductivity Of Alumina, D. P. White

Physics Faculty Publications

The effects of ionizing and displacive radiation on the thermal conductivity of alumina at high temperatures have been studied. The phonon scattering relaxation times for several scattering mechanisms have been used to determine the effect on the thermal conductivity. The scattering mechanisms considered are scattering by electrons excited into the conduction band, vacancies, aluminum precipitates, and voids. It is found that under irradiation conditions where the electrical conductivity and dielectric loss tangent are greatly increased there is not a significant decrease in the thermal conductivity due to phonon-electron scattering. The conditions under which the scattering due to vacancies, aluminum precipitates, …