Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Physics Faculty Research & Creative Works

Laser

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Imaging An Aligned Polyatomic Molecule With Laser-Induced Electron Diffraction, Michael G. Pullen, Benjamin Wolter, Anh-Thu Le, Matthias Baudisch, Michael Hemmer, Arne Senftleben, Claus Dieter Schroeter, Joachim Ullrich, Robert Moshammer, C. D. Lin, Jens Biegert Jun 2015

Imaging An Aligned Polyatomic Molecule With Laser-Induced Electron Diffraction, Michael G. Pullen, Benjamin Wolter, Anh-Thu Le, Matthias Baudisch, Michael Hemmer, Arne Senftleben, Claus Dieter Schroeter, Joachim Ullrich, Robert Moshammer, C. D. Lin, Jens Biegert

Physics Faculty Research & Creative Works

Laser-induced electron diffraction is an evolving tabletop method that aims to image ultrafast structural changes in gas-phase polyatomic molecules with sub-Ångström spatial and femtosecond temporal resolutions. Here we demonstrate the retrieval of multiple bond lengths from a polyatomic molecule by simultaneously measuring the C-C and C-H bond lengths in aligned acetylene. Our approach takes the method beyond the hitherto achieved imaging of simple diatomic molecules and is based on the combination of a 160kHz mid-infrared few-cycle laser source with full three-dimensional electron-ion coincidence detection. Our technique provides an accessible and robust route towards imaging ultrafast processes in complex gas-phase molecules …


Universality Of Returning Electron Wave Packet In High-Order Harmonic Generation With Midinfrared Laser Pulses, Anh-Thu Le, Hui Wei, Cheng Jin, Vu Ngoc Tuoc, Toru Morishita, C. D. Lin Jul 2014

Universality Of Returning Electron Wave Packet In High-Order Harmonic Generation With Midinfrared Laser Pulses, Anh-Thu Le, Hui Wei, Cheng Jin, Vu Ngoc Tuoc, Toru Morishita, C. D. Lin

Physics Faculty Research & Creative Works

We show that a returning electron wave packet in high-order harmonic generation (HHG) with midinfrared laser pulses converges to a universal limit for a laser wavelength above about 3µm. The results are consistent among the different methods: a numerical solution of the time-dependent Schrödinger equation, the strong-field approximation, and the quantum orbits theory. We further analyze how the contribution from different electron "trajectories" survives the macroscopic propagation in the medium. Our result thus provides a new framework for investigating the wavelength scaling law for the HHG yields.


Waveforms For Optimal Sub-Kev High-Order Harmonics With Synthesized Two- Or Three-Colour Laser Fields, Cheng Jin, Guoli Wang, Hui Wei, Anh-Thu Le, C. D. Lin May 2014

Waveforms For Optimal Sub-Kev High-Order Harmonics With Synthesized Two- Or Three-Colour Laser Fields, Cheng Jin, Guoli Wang, Hui Wei, Anh-Thu Le, C. D. Lin

Physics Faculty Research & Creative Works

High-order harmonics extending to the X-ray region generated in a gas medium by intense lasers offer the potential for providing tabletop broadband light sources but so far are limited by their low conversion efficiency. Here we show that harmonics can be enhanced by one to two orders of magnitude without an increase in the total laser power if the laser's waveform is optimized by synthesizing two- or three-colour fields. The harmonics thus generated are also favourably phase-matched so that radiation is efficiently built up in the gas medium. Our results, combined with the emerging intense high-repetition MHz lasers, promise to …