Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Development Of A Low Field Mri-Based Approach For Observation Of Water Penetration Into Clay: Preliminary Results, Shivam Gupta Aug 2021

Development Of A Low Field Mri-Based Approach For Observation Of Water Penetration Into Clay: Preliminary Results, Shivam Gupta

Undergraduate Student Research Internships Conference

Magnetic resonance imaging (MRI) are considered one of the most efficient and non-invasive methods of observing water content in permeable substances. MRI can visualize and quantify the movement of water in real time. In this study, MRI was used to observe the water penetration through clay. Furthermore, MRI can acquire three-dimensional data due to its radio-frequency signals from any orientation. The contrast of the images produced by MRI is a display of the fluid concentration. As such, any change in the contrast intensity is interpreted as a regional change in the concentration of fluid. This report summarizes the preliminary results …


Simulating 129-Xe Hyperpolarization, Jacob F. Abiad Aug 2021

Simulating 129-Xe Hyperpolarization, Jacob F. Abiad

Undergraduate Student Research Internships Conference

Hyperpolarized 129-Xe is an important resource in many fields of medical physics and MRI research. The physics of the efficient production of hyperpolarized 129-Xe is therefore equally worth investigation. The main process of hyperpolarizing 129-Xe is Spin Exchange Optical Pumping (SEOP) and is dependent on several physical factors that can be difficult to constantly change in a lab setting. Physical modelling of 129-Xe hyperpolarization allows for the more efficient testing of hyperpolarization physics in a wide array of experimental setups to better determine the optimal values for hyperpolarization. This research project attempted to create a working model for 129-Xe hyperpolarization …


Detecting Graphene Nanosheets On Leaves​ Of Ceratophyllum Demersum ​, Teresa A. Buragina Aug 2021

Detecting Graphene Nanosheets On Leaves​ Of Ceratophyllum Demersum ​, Teresa A. Buragina

Undergraduate Student Research Internships Conference

Since its discovery, applications of graphene, a material that is a single layer of carbon atoms, have been useful in many different fields. In this project, we aim to image graphene flakes, formed from graphene-RNA nanocomposites, on the surface of aquatic plant leaves. Graphene-RNA 6 solutions were vacuum filtrated onto leaves of Ceratophyllum Demersum, which were then imaged at different heights using confocal microscopy, producing 3D images of graphene flakes.


Comparing Semi-Automated Segmentation Of Traditional-Resolution And High-Resolution Hyperpolarized 129xe Mri On Covid-19 Survivors, Tingting Wu Aug 2021

Comparing Semi-Automated Segmentation Of Traditional-Resolution And High-Resolution Hyperpolarized 129xe Mri On Covid-19 Survivors, Tingting Wu

Undergraduate Student Research Internships Conference

Hyperpolarized gas MRI using inert gases like Xe is a valuable tool in visualizing lung ventilation in patients, and can be used as a longitudinal monitoring tool for patients with lung diseases. However, use of this method requires segmentation and quantification of parameters such as ventilation defect percentage (VDP), which is often very subjective depending on the observer. This study aimed to determine the accuracy and consistency of VDP calculation using the same MRI scans from COVID-19 patients, but with high resolution and low (traditional) resolution versions. Using a MATLAB script developed previously, it was found that in general, using …


Stability Of Dispersive-Dissipative Wave Equations, Mahima Siali Aug 2021

Stability Of Dispersive-Dissipative Wave Equations, Mahima Siali

Undergraduate Student Research Internships Conference

No abstract provided.


Numerical Simulation Of Adaptive Metabolic Response To Anti-Angiogenic Treatment In Renal Cell Carcinoma, Saranya Varakunan Aug 2021

Numerical Simulation Of Adaptive Metabolic Response To Anti-Angiogenic Treatment In Renal Cell Carcinoma, Saranya Varakunan

Undergraduate Student Research Internships Conference

Renal cell carcinoma, a malignant kidney cancer, is often treated using anti-angiogenic drugs to prevent the growth of blood vessels within the tumour. Although tumours initially respond to this treatment, they eventually develop resistance. This resistance is hypothesized to be caused by a switch to a symbiotic metabolism that allows cells to survive even with a low blood supply.

This project seeks to computationally model the transport of oxygen, lactate, and glucose within a tumour in order to examine how cancer metabolism adapts to changes in blood vessels.


Numerical Modelling Of A Novel 3d T-Junction Microfluidic Droplet Generator, Andrew G.H. Roberts Aug 2021

Numerical Modelling Of A Novel 3d T-Junction Microfluidic Droplet Generator, Andrew G.H. Roberts

Undergraduate Student Research Internships Conference

No abstract provided.


Speed And Accuracy For Partial Differential Equation Solvers, Aidan Grasby Aug 2021

Speed And Accuracy For Partial Differential Equation Solvers, Aidan Grasby

Undergraduate Student Research Internships Conference

This Research project consisted of testing multiple software used to solve partial differential equations to determine the fastest solver while not compromising other aspects such as accuracy. The larger project involved using electrodes and electric fields to treat brain tumours. An optimization program is required to determine electrode placement and this program must solve partial differential equations to determine the electric field for each electrode configuration. This optimization step is extremely slow so it is critical a faster partial differential equation solver is found. Therefore, I tested various software to determine the fastest solver that could then be linked with …