Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Shielded Radiography With A Laser-Driven Mev-Energy X-Ray Source, Shouyuan Chen, Grigory V. Golovin, Cameron Miller, Daniel Haden, Sudeep Banerjee, Ping Zhang, Cheng Liu, Jun Zhang, Baozhen Zhao, Shaun Clarke, Sara Pozzi, Donald Umstadter Jan 2016

Shielded Radiography With A Laser-Driven Mev-Energy X-Ray Source, Shouyuan Chen, Grigory V. Golovin, Cameron Miller, Daniel Haden, Sudeep Banerjee, Ping Zhang, Cheng Liu, Jun Zhang, Baozhen Zhao, Shaun Clarke, Sara Pozzi, Donald Umstadter

Donald Umstadter Publications

We report the results of experimental and numerical-simulation studies of shielded radiography using narrowband MeVenergy X-rays from a compact all-laser-driven inverse-Compton-scattering X-ray light source. This recently developed Xray light source is based on a laser-wakefield accelerator with ultra-high-field gradient (GeV/cm). We demonstrate experimentally high-quality radiographic imaging (image contrast of 0.4 and signal-to-noise ratio of 2:1) of a target composed of 8-mm thick depleted uranium shielded by 80-mm thick steel, using a 6-MeV X-ray beam with a spread of 45% (FWHM) and 107 photons in a single shot. The corresponding dose of the X-ray pulse measured in front of the target …


Ultrafast Intense-Field Photoionization And Photofragmentation Of Systematic Series Of Substituted Organic Molecules, Timothy D. Scarborough Apr 2012

Ultrafast Intense-Field Photoionization And Photofragmentation Of Systematic Series Of Substituted Organic Molecules, Timothy D. Scarborough

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

The abundance and relevance of organic molecules similar to benzene makes their study important. Studying the interactions of such molecules with intense light fields has implications for the generation of short-wavelength radiation, attosecond science, high-harmonic generation, and many other fields. However, the computing power necessary to complete fully ab initio calculations describing molecules of this size does not exist; this leaves theoretical studies to rely on assumptions and approximations just to calculate the energies of the ground state. Including any sort of dynamics in these calculations is prohibitively complicated, and this makes experimental observations important. Since many organic molecules are …


In Situ Measurement Of Three-Dimensional Ion Densities In Focused Femtosecond Pulses, James Strohaber, Cornelis J. Uiterwaal Jan 2008

In Situ Measurement Of Three-Dimensional Ion Densities In Focused Femtosecond Pulses, James Strohaber, Cornelis J. Uiterwaal

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

We image spatial distribution of xenon ions in the focus of a laser beam of ultrashort, intense pulses in all three dimensions, with a resolution of three by twelve microns in the two transverse directions. This allows for studying ionization processes without spatially averaging ion yields. Our in situ ion imaging is also useful to analyze focal intensity profiles and to investigate the transverse modal purity of tightly focused beams of complex light. As an example, the intensity profile of a Hermite-Gaussian beam mode HG recorded with ions is found to be in good agreement with optical images.