Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

PDF

Missouri University of Science and Technology

Keyword
Publication Year
Publication
Publication Type

Articles 61 - 90 of 1988

Full-Text Articles in Physical Sciences and Mathematics

Silverrush. Xii. Intensity Mapping For Ly Α Emission Extending Over 100-1000 Comoving Kpc Around Z ∼2-7 Laes With Subaru Hsc-Ssp And Chorus Data, Shotaro Kikuchihara, Yuichi Harikane, Masami Ouchi, Yoshiaki Ono, Takatoshi Shibuya, Ryohei Itoh, Ryota Kakuma, Akio K. Inoue, Haruka Kusakabe, Kazuhiro Shimasaku, Rieko Momose, Yuma Sugahara, Satoshi Kikuta, Shun Saito Jun 2022

Silverrush. Xii. Intensity Mapping For Ly Α Emission Extending Over 100-1000 Comoving Kpc Around Z ∼2-7 Laes With Subaru Hsc-Ssp And Chorus Data, Shotaro Kikuchihara, Yuichi Harikane, Masami Ouchi, Yoshiaki Ono, Takatoshi Shibuya, Ryohei Itoh, Ryota Kakuma, Akio K. Inoue, Haruka Kusakabe, Kazuhiro Shimasaku, Rieko Momose, Yuma Sugahara, Satoshi Kikuta, Shun Saito

Physics Faculty Research & Creative Works

We conduct intensity mapping to probe for extended diffuse Lyα emission around Lyα emitters (LAEs) at z ∼2-7, exploiting very deep (∼26 mag at 5σ) and large-area (∼4.5 deg2) Subaru/Hyper Suprime-Cam narrowband (NB) images and large LAE catalogs consisting of a total of 1540 LAEs at z = 2.2, 3.3, 5.7, and 6.6 obtained by the HSC-SSP and CHORUS projects. We calculate the spatial correlations of these LAEs with ∼1-2-billion-pixel flux values of the NB images, deriving the average Lyα surface brightness (SBLyα ) radial profiles around the LAEs. By carefully estimating systematics such as fluctuations of sky background and …


Correlation Functions Of The Anharmonic Oscillator: Numerical Verification Of Two-Loop Corrections To The Large-Order Behavior, Ludovico T. Giorgini, Ulrich D. Jentschura, Enrico M. Malatesta, Giorgio Parisi, Tommaso Rizzo, Jean Zinn-Justin May 2022

Correlation Functions Of The Anharmonic Oscillator: Numerical Verification Of Two-Loop Corrections To The Large-Order Behavior, Ludovico T. Giorgini, Ulrich D. Jentschura, Enrico M. Malatesta, Giorgio Parisi, Tommaso Rizzo, Jean Zinn-Justin

Physics Faculty Research & Creative Works

Recently, the large-order behavior of correlation functions of the O(N)-anharmonic oscillator has been analyzed by us [L. T. Giorgini et al., Phys. Rev. D 101, 125001 (2020)PRVDAQ2470-001010.1103/PhysRevD.101.125001]. Two-loop corrections about the instanton configurations were obtained for the partition function, the two-point and four-point functions, and the derivative of the two-point function at zero momentum transfer. Here, we attempt to verify the obtained analytic results against numerical calculations of higher-order coefficients for the O(1), O(2), and O(3) oscillators, and we demonstrate the drastic improvement of the agreement of the large-order asymptotic estimates and perturbation theory upon the inclusion of the two-loop …


Counterflow Dynamics Of Two Correlated Impurities Immersed In A Bosonic Gas, Friethjof Theel, Simeon I. Mistakidis, Kevin Keiler, Peter Schmelcher May 2022

Counterflow Dynamics Of Two Correlated Impurities Immersed In A Bosonic Gas, Friethjof Theel, Simeon I. Mistakidis, Kevin Keiler, Peter Schmelcher

Physics Faculty Research & Creative Works

The Counterflow Dynamics Of Two Correlated Impurities In A Double Well Coupled To A One-Dimensional Bosonic Medium Is Explored. We Determine The Ground-State Phase Diagram Of The System According To The Impurity-Medium Entanglement And The Impurities' Two-Body Correlations. Specifically, Bound Impurity Structures Reminiscent Of Bipolarons For Strong Attractive Couplings As Well As Configurations With Two Clustered Or Separated Impurities In The Repulsive Case Are Identified. The Interval Of Existence Of These Phases Depends Strongly On The Impurity-Impurity Interactions And External Confinement Of The Medium. Accordingly The Impurities' Dynamical Response, Triggered By Suddenly Ramping Down The Central Potential Barrier, Is Affected …


Building-Block Approach To The Discovery Of Na8mn2(Ge2se6)2: A Polar Chalcogenide Exhibiting Promising Harmonic Generation Signals With A High Laser-Induced Damage Threshold, Srikanth Balijapelly, Andrew J. Craig, Jeong Bin Cho, Joon I. Jang, Kartik Ghosh, Jennifer A. Aitken, Aleksandr V. Chernatynskiy, Amitava Choudhury Apr 2022

Building-Block Approach To The Discovery Of Na8mn2(Ge2se6)2: A Polar Chalcogenide Exhibiting Promising Harmonic Generation Signals With A High Laser-Induced Damage Threshold, Srikanth Balijapelly, Andrew J. Craig, Jeong Bin Cho, Joon I. Jang, Kartik Ghosh, Jennifer A. Aitken, Aleksandr V. Chernatynskiy, Amitava Choudhury

Physics Faculty Research & Creative Works

A new polar quaternary chalcogenide, Na8Mn2(Ge2Se6)2, has been synthesized using the building-block approach by reacting preformed Na6Ge2Se6 and MnCl2 at 750 °C. The structure consists of layers of [Na(1)Mn(Ge2Se6)]3– stacked perpendicular to the c-axis and sodium ions occupying the interlayer space. An indirect bandgap of 1.52 eV has been calculated using density functional theory, which is expectedly underestimated compared to the observed optical bandgap of 1.95 eV derived from diffuse reflectance spectroscopic measurements in the UV/Vis/NIR region. Magnetic measurements confirm the paramagnetic nature of Na8Mn2(Ge2Se6)2 with an experimental magnetic moment of 5.8 μB in good agreement with the theoretical spin …


Using Supervised Learning Algorithms As A Follow-Up Method In The Search Of Gravitational Waves From Core-Collapse Supernovae, Javier M. Antelis, Marco Cavaglia, Travis Hansen, Manuel D. Morales, Claudia Moreno, Soma Mukherjee, Marek J. Szczepańczyk, Michele Zanolin Apr 2022

Using Supervised Learning Algorithms As A Follow-Up Method In The Search Of Gravitational Waves From Core-Collapse Supernovae, Javier M. Antelis, Marco Cavaglia, Travis Hansen, Manuel D. Morales, Claudia Moreno, Soma Mukherjee, Marek J. Szczepańczyk, Michele Zanolin

Physics Faculty Research & Creative Works

We present a follow-up method based on supervised machine learning (ML) to improve the performance in the search of gravitational wave (GW) bursts from core-collapse supernovae (CCSNe) using the coherent WaveBurst (cWB) pipeline. The ML model discriminates noise from signal events by using a set of reconstruction parameters provided by cWB as features. Detected noise events are discarded yielding a reduction in the false alarm rate (FAR) and the false alarm probability thus enhancing the statistical significance. We tested the proposed method using strain data from the first half of the third observing run of advanced LIGO, and CCSNe GW …


Fluoride Doping In Crystalline And Amorphous Indium Oxide Semiconductors, Aritra Sil, Michael J. Deck, Elise A. Goldfine, Chi Zhang, Sawankumar V. Patel, Steven Flynn, Haoyu Liu, Po Hsiu Chien, Kenneth R. Poeppelmeier, Vinayak P. Dravid, Michael J. Bedzyk, Julia E. Medvedeva, Yan Yan Hu, Antonio Facchetti Apr 2022

Fluoride Doping In Crystalline And Amorphous Indium Oxide Semiconductors, Aritra Sil, Michael J. Deck, Elise A. Goldfine, Chi Zhang, Sawankumar V. Patel, Steven Flynn, Haoyu Liu, Po Hsiu Chien, Kenneth R. Poeppelmeier, Vinayak P. Dravid, Michael J. Bedzyk, Julia E. Medvedeva, Yan Yan Hu, Antonio Facchetti

Physics Faculty Research & Creative Works

In this contribution, the structural and electronic effects of fluoride doping in both crystalline and amorphous indium oxides are investigated by both experimental and theoretical techniques. Pristine crystalline and amorphous fluoride-doped indium oxide (F:In-O) phases were prepared by solution-based combustion synthesis and sol-gel techniques, respectively. The chemical composition, environment, and solid-state microstructure of these materials were extensively studied with a wide array of state-of-the-art techniques such as UV-vis, X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, 19F and 115In solid-state NMR, high-resolution transmission electron microscopy (HR-TEM), and extended X-ray absorption fine structure (EXAFS) as well as by density functional theory (DFT) …


Iterative Reconstruction Excursions For Baryon Acoustic Oscillations And Beyond, Hee Jong Seo, Atsuhisa Ota, Marcel Schmittfull, Shun Saito, Florian Beutler Apr 2022

Iterative Reconstruction Excursions For Baryon Acoustic Oscillations And Beyond, Hee Jong Seo, Atsuhisa Ota, Marcel Schmittfull, Shun Saito, Florian Beutler

Physics Faculty Research & Creative Works

The density field reconstruction technique has been widely used for recovering the baryon acoustic oscillation (BAO) feature in galaxy surveys that has been degraded due to non-linearities. Recent studies advocated adopting iterative steps to impro v e the recovery much be yond that of the standard technique. In this paper, we investigate the performance of a few selected iterative re- construction techniques focusing on the BAO and the broad-band shape of the two-point clustering. We include redshift-space distortions, halo bias, and shot noise and inspect the components of the reconstructed field in Fourier space and in configuration space using both …


Role Of Fluoride Doping In Low-Temperature Combustion-Synthesized Zroxdielectric Films, Aritra Sil, Elise A. Goldfine, Wei Huang, Michael J. Bedzyk, Julia E. Medvedeva, Antonio Facchetti Mar 2022

Role Of Fluoride Doping In Low-Temperature Combustion-Synthesized Zroxdielectric Films, Aritra Sil, Elise A. Goldfine, Wei Huang, Michael J. Bedzyk, Julia E. Medvedeva, Antonio Facchetti

Physics Faculty Research & Creative Works

Zirconium oxide (ZrOx) is an attractive metal oxide dielectric material for low-voltage, optically transparent, and mechanically flexible electronic applications due to the high dielectric constant (κ ∼14-30), negligible visible light absorption, and, as a thin film, good mechanical flexibility. In this contribution, we explore the effect of fluoride doping on structure-property-function relationships in low-temperature solution-processed amorphous ZrOx. Fluoride-doped zirconium oxide (F:ZrOx) films with a fluoride content between 1.7 and 3.2 in atomic (at) % were synthesized by a combustion synthesis procedure. Irrespective of the fluoride content, grazing incidence X-ray diffraction, atomic-force microscopy, and UV-vis spectroscopy data indicate that all F:ZrOx …


An Accurate And Computationally Efficient Method For Battery Capacity Fade Modeling, D. M. Ajiboye, Jonathan W. Kimball, R.(Robert) G. Landers, John (T.) Park Mar 2022

An Accurate And Computationally Efficient Method For Battery Capacity Fade Modeling, D. M. Ajiboye, Jonathan W. Kimball, R.(Robert) G. Landers, John (T.) Park

Electrical and Computer Engineering Faculty Research & Creative Works

The Industry Demand for Accurate and Fast Algorithms that Model Vital Battery Parameters, E.g., State-Of-Health, State-Of-Charge, Pulse-Power Capability, is Substantial. One of the Most Critical Models is Battery Capacity Fade. the Key Challenge with Physics-Based Battery Capacity Fade Modeling is the High Numerical Cost in Solving Complex Models. in This Study, an Efficient and Fast Model is Presented to Capture Capacity Fade in Lithium-Ion Batteries. Here, the High-Order Chebyshev Spectral Method is Employed to Address the Associated Complexity with Physics-Based Capacity Fade Models. its Many Advantages, Such as Low Computational Memory, High Accuracy, Exponential Convergence, and Ease of Implementation, Allow …


Fully Differential Investigation Of Two-Center Interference In Dissociative Capture In P + H₂ Collisions, S. Bastola, M. Dhital, B. Lamichhane, A. Silvus, R. Lomsadze, J. Davis, A. Hasan, A. Igarashi, Michael Schulz Mar 2022

Fully Differential Investigation Of Two-Center Interference In Dissociative Capture In P + H₂ Collisions, S. Bastola, M. Dhital, B. Lamichhane, A. Silvus, R. Lomsadze, J. Davis, A. Hasan, A. Igarashi, Michael Schulz

Physics Faculty Research & Creative Works

We have measured and calculated fully differential cross sections for vibrational dissociation following capture in 75-keV p + H2 collisions. For a molecular orientation perpendicular to the projectile beam axis and parallel to the transverse momentum transfer we observe a pronounced interference structure. The positions of the interference extrema suggest that the interference term is afflicted with a phase shift which depends on the projectile scattering angle. However, no significant dependence on the kinetic-energy release was observed. Considerable discrepancies between our calculations and experimental data were found.


Guiding Of Kev Ions Between Two Insulating Parallel Plates, Robert D. Dubois, K. Tőkési, E. Giglio Mar 2022

Guiding Of Kev Ions Between Two Insulating Parallel Plates, Robert D. Dubois, K. Tőkési, E. Giglio

Physics Faculty Research & Creative Works

Experimental data are presented for low-energy singly charged ion transport between two insulating parallel plates. Using a beam intensity of approximately 20 pA, measurements of the incoming and transmitted beams provide quantitative temporal information about the charge deposited on the plates and the guiding probability. Using a smaller beam intensity (~ 1 pA) plate charging and discharging properties were studied as a function of time. These data imply that both the charge deposition and decay along the surface and through the bulk need to be modeled as acting independently. A further reduction of beam intensity to ~ 25 fA allowed …


Zelda: Fitting Lyman Alpha Line Profiles Using Deep Learning, Siddhartha Gurung-López, Max Gronke, Shun Saito, Silvia Bonoli, Álvaro A. Orsi Mar 2022

Zelda: Fitting Lyman Alpha Line Profiles Using Deep Learning, Siddhartha Gurung-López, Max Gronke, Shun Saito, Silvia Bonoli, Álvaro A. Orsi

Physics Faculty Research & Creative Works

We present zELDA (redshift Estimator for Line profiles of Distant Lyman Alpha emitters), an open-source code to fit Lyman α (Ly α) line profiles. The main motivation is to provide the community with an easy to use and fast tool to analyse Ly α line profiles uniformly to improve the understating of Ly α emitting galaxies. zELDA is based online profiles of the commonly used 'shell-model' pre-computed with the full Monte Carlo radiative transfer code LyaRT. Via interpolation between these spectra and the addition of noise, we assemble a suite of realistic Ly α spectra which we use to train …


Magic Wavelengths For 1s-Ns And 2s-Ns Transitions In Hydrogenlike Systems, Chandra M. Adhikari, Jonathan C. Canales, Thusitha P.W. Arthanayaka, Ulrich D. Jentschura Mar 2022

Magic Wavelengths For 1s-Ns And 2s-Ns Transitions In Hydrogenlike Systems, Chandra M. Adhikari, Jonathan C. Canales, Thusitha P.W. Arthanayaka, Ulrich D. Jentschura

Physics Faculty Research & Creative Works

We study the magic wavelength for two-photon 1S-nS transitions in a hydrogen and deuterium atom, as well as 2S-nS transitions, where the lower level is the metastable 2S state. At the magic wavelength, the dynamic Stark shifts of the ground and the excited state of the transition coincide, so that the transition frequency is independent of the intensity of the trapping laser field. Experimentally feasible magic wavelengths of transitions with small slopes in the atomic polarizabilities are determined; these are the most stable magic wavelengths against variations of the laser frequency. We provide data for the magic wavelengths for the …


Intra- And Interband Excitations Induced Residue Decay Of The Bose Polaron In A One-Dimensional Double-Well, Jie Chen, Simeon I. Mistakidis, Peter Schmelcher Mar 2022

Intra- And Interband Excitations Induced Residue Decay Of The Bose Polaron In A One-Dimensional Double-Well, Jie Chen, Simeon I. Mistakidis, Peter Schmelcher

Physics Faculty Research & Creative Works

We Investigate The Polaronic Properties Of A Single Impurity Immersed In A Weakly Interacting Bosonic Environment Confined Within A One-Dimensional Double-Well Potential Using An Exact Diagonalization Approach. We Find That An Increase Of The Impurity-Bath Coupling Results In A Vanishing Residue, Signifying The Occurrence Of The Polaron Orthogonality Catastrophe. Asymptotic Configurations Of The Systems' Ground State Wave Function In The Strongly Interacting Regime Are Obtained By Means Of A Schmidt Decomposition, Which In Turn Accounts For The Observed Orthogonality Catastrophe Of The Polaron. We Exemplify That Depending On The Repulsion Of The Bose Gas, Three Distinct Residue Behaviors Appear With …


Pattern Formation In One-Dimensional Polaron Systems And Temporal Orthogonality Catastrophe, Georgios M. Koutentakis, Simeon I. Mistakidis, Peter Schmelcher Mar 2022

Pattern Formation In One-Dimensional Polaron Systems And Temporal Orthogonality Catastrophe, Georgios M. Koutentakis, Simeon I. Mistakidis, Peter Schmelcher

Physics Faculty Research & Creative Works

Recent Studies Have Demonstrated That Higher Than Two-Body Bath-Impurity Correlations Are Not Important For Quantitatively Describing The Ground State Of The Bose Polaron. Motivated By The Above, We Employ The So-Called Gross Ansatz (GA) Approach To Unravel The Stationary And Dynamical Properties Of The Homogeneous One-Dimensional Bose-Polaron For Different Impurity Momenta And Bath-Impurity Couplings. We Explicate That The Character Of The Equilibrium State Crossovers From The Quasi-Particle Bose Polaron Regime To The Collective-Excitation Stationary Dark-Bright Soliton For Varying Impurity Momentum And Interactions. Following An Interspecies Interaction Quench The Temporal Orthogonality Catastrophe Is Identified, Provided That Bath-Impurity Interactions Are Sufficiently Stronger …


Long-Range Interactions For Hydrogen Atoms In Excited D States, Chandra M. Adhikari, Ulrich D. Jentschura Mar 2022

Long-Range Interactions For Hydrogen Atoms In Excited D States, Chandra M. Adhikari, Ulrich D. Jentschura

Physics Faculty Research & Creative Works

Pressure shifts inside an atomic beam are among the more theoretically challenging effects in high-precision measurements of atomic transitions. A crucial element in their theoretical analysis is the understanding of long-range interatomic interactions inside the beam. For excited reference states, the presence of quasi-degenerate states leads to additional challenges, due to the necessity to diagonalize large matrices in the quasi-degenerate hyperfine manifolds. Here, we focus on the interactions of hydrogen atoms in reference states composed of an excited nD state (atom A), and in the metastable 2S state (atom B). We devote special attention to the cases n = 3 …


Depth-Targeted Energy Delivery Deep Inside Scattering Media, Nicholas Bender, Alexey Yamilov, Arthur Goetschy, Hasan Yılmaz, Chia Wei Hsu, Hui Cao Mar 2022

Depth-Targeted Energy Delivery Deep Inside Scattering Media, Nicholas Bender, Alexey Yamilov, Arthur Goetschy, Hasan Yılmaz, Chia Wei Hsu, Hui Cao

Physics Faculty Research & Creative Works

Diffusion makes it difficult to predict and control wave transport through a medium. Overcoming wave diffusion to deliver energy into a target region deep inside a diffusive system is an important challenge for applications, but also represents an interesting fundamental question. It is known that coherently controlling the incident wavefront allows diffraction-limited focusing inside a diffusive system, but in many applications, the targets are significantly larger than a focus and the maximum deliverable energy remains unknown. Here we introduce the 'deposition matrix', which maps an input wavefront to the internal field distribution, and we theoretically predict the ultimate limit on …


Magic Wavelengths For 1s–Ns And 2s–Ns Transitions In Hydrogenlike Systems, Chandra M. Adhikari, Jonathan C. Canales, Thusitha P.W. Arthanayaka, Ulrich D. Jentschura Mar 2022

Magic Wavelengths For 1s–Ns And 2s–Ns Transitions In Hydrogenlike Systems, Chandra M. Adhikari, Jonathan C. Canales, Thusitha P.W. Arthanayaka, Ulrich D. Jentschura

Physics Faculty Research & Creative Works

We study the magic wavelength for two-photon 1S–nS transitions in a hydrogen and deuterium atom, as well as 2S–nS transitions, where the lower level is the metastable 2S state. At the magic wavelength, the dynamic Stark shifts of the ground and the excited state of the transition coincide, so that the transition frequency is independent of the intensity of the trapping laser field. Experimentally feasible magic wavelengths of transitions with small slopes in the atomic polarizabilities are determined; these are the most stable magic wavelengths against variations of the laser frequency. We provide data for the magic wavelengths for the …


Long-Range Interactions For Hydrogen Atoms In Excited D States, Chandra M. Adhikari, Ulrich D. Jentschura Mar 2022

Long-Range Interactions For Hydrogen Atoms In Excited D States, Chandra M. Adhikari, Ulrich D. Jentschura

Physics Faculty Research & Creative Works

Pressure shifts inside an atomic beam are among the more theoretically challenging effects in high-precision measurements of atomic transitions. A crucial element in their theoretical analysis is the understanding of long-range interatomic interactions inside the beam. For excited reference states, the presence of quasi-degenerate states leads to additional challenges, due to the necessity to diagonalize large matrices in the quasi-degenerate hyperfine manifolds. Here, we focus on the interactions of hydrogen atoms in reference states composed of an excited nD state (atom A), and in the metastable 2S state (atom B). We devote special attention to the cases n = 3 …


Fully Differential Investigation Of Two-Center Interference In Dissociative Capture In P+ H2 Collisions, S. Bastola, M. Dhital, B. Lamichhane, A. Silvus, R. Lomsadze, J. Davis, A.(Ahmad) Hasan, A. Igarashi, Michael Schulz Mar 2022

Fully Differential Investigation Of Two-Center Interference In Dissociative Capture In P+ H2 Collisions, S. Bastola, M. Dhital, B. Lamichhane, A. Silvus, R. Lomsadze, J. Davis, A.(Ahmad) Hasan, A. Igarashi, Michael Schulz

Physics Faculty Research & Creative Works

We Have Measured and Calculated Fully Differential Cross Sections for Vibrational Dissociation Following Capture in 75-KeV P+H2 Collisions. for a Molecular Orientation Perpendicular to the Projectile Beam Axis and Parallel to the Transverse Momentum Transfer We Observe a Pronounced Interference Structure. the Positions of the Interference Extrema Suggest that the Interference Term is Afflicted with a Phase Shift Which Depends on the Projectile Scattering Angle. However, No Significant Dependence on the Kinetic-Energy Release Was Observed. Considerable Discrepancies between Our Calculations and Experimental Data Were Found.


Effect Of Interfacial Atomic Mixing On The Thermal Conductivity Of Multi-Layered Stacking Structure, Yingguang Liu, Xinqiang Xue, Guoliang Ren, Aleksandr V. Chernatynskiy Feb 2022

Effect Of Interfacial Atomic Mixing On The Thermal Conductivity Of Multi-Layered Stacking Structure, Yingguang Liu, Xinqiang Xue, Guoliang Ren, Aleksandr V. Chernatynskiy

Physics Faculty Research & Creative Works

Multi-layered stacking structures and atomic mixing interfaces were constructed. The effects of various factors on the thermal conductivity of different lattice structures were studied by non-equilibrium molecular dynamics simulations, including the number of atomic mixing layers, temperature, total length of the system, and period length. The results showed that the mixing of two and four layers of atoms can improve the thermal conductivities of the multi-layer structure with a small total length due to a phonon "bridge" mechanism. When the total length of the system is large, the thermal conductivity of the multi-layer structure with atomic mixing interfaces decreases significantly …


High Harmonic Generation In Mixed Xuv And Nir Fields At A Free-Electron Laser, Jan Troß, Shashank Pathak, Adam Summers, Dimitrios Rompotis, Benjamin Erk, Christopher Passow, Bastian Manschwetus, Rebecca Boll, Patrik Grychtol, Sadia Bari, Vinod Kumarappan, Anh(Anh-Thu) Thu Le, Cheng Jin, Carlos Trallero Feb 2022

High Harmonic Generation In Mixed Xuv And Nir Fields At A Free-Electron Laser, Jan Troß, Shashank Pathak, Adam Summers, Dimitrios Rompotis, Benjamin Erk, Christopher Passow, Bastian Manschwetus, Rebecca Boll, Patrik Grychtol, Sadia Bari, Vinod Kumarappan, Anh(Anh-Thu) Thu Le, Cheng Jin, Carlos Trallero

Physics Faculty Research & Creative Works

We Present the Results of an Experiment Investigating the Generation of High-Order Harmonics by a Femtosecond Near-Infrared (NIR) Laser Pulse in the Presence of an Extreme Ultraviolet (XUV) Field Provided by a Free-Electron Laser (FEL), a Process Referred to as XUV-Assisted High-Order Harmonic Generation (HHG). Our Experimental Findings Show that the XUV Field Can Lead to a Small Enhancement in the Harmonic Yield When the XUV and NIR Pulses overlap in Time, while a Strong Decrease of the HHG Yield and a Red Shift of the HHG Spectrum is Observed When the XUV Precedes the NIR Pulse. the Latter Observations …


On-Demand Generation Of Dark-Bright Soliton Trains In Bose-Einstein Condensates, A. Romero-Ros, Garyfallia C. Katsimiga, P. G. Kevrekidis, B. Prinari, G. Biondini, P. Schmelcher Feb 2022

On-Demand Generation Of Dark-Bright Soliton Trains In Bose-Einstein Condensates, A. Romero-Ros, Garyfallia C. Katsimiga, P. G. Kevrekidis, B. Prinari, G. Biondini, P. Schmelcher

Physics Faculty Research & Creative Works

The controlled creation of dark-bright (DB) soliton trains in multicomponent Bose-Einstein condensates (BECs) is a topic of ongoing interest. In this work we generalize earlier findings on the creation of dark soliton trains in single-component BECs [A. Romero-Ros, Phys. Rev. A 103, 023329 (2021)2469-992610.1103/PhysRevA.103.023329] to two-component BECs. By choosing suitable filled box-type initial configurations (FBTCs) and solving the direct scattering problem for the defocusing vector nonlinear Schrödinger equation with nonzero boundary conditions we obtain analytical expressions for the DB soliton solutions produced by a general FBTC. It is found that the size of the initial box and the amount of …


Metallic Networks And Hydrogen Compensation In Highly Nonstoichiometric Amorphous In₂O₃₋ₓ, Julia E. Medvedeva, E. Caputa-Hatley, I. Zhuravlev Feb 2022

Metallic Networks And Hydrogen Compensation In Highly Nonstoichiometric Amorphous In₂O₃₋ₓ, Julia E. Medvedeva, E. Caputa-Hatley, I. Zhuravlev

Physics Faculty Research & Creative Works

The unique response of amorphous ionic oxides to changes in oxygen stoichiometry is investigated using computationally intensive ab initio molecular dynamics simulations, comprehensive structural analysis, and hybrid density-functional calculations for the oxygen defect formation energy and electronic properties of amorphous In2O3-x with x = 0-0.185. In marked contrast to nonstoichiometric crystalline nanocomposites with clusters of metallic inclusions inside an insulating matrix, the lack of oxygen in amorphous indium oxide is distributed between a large fraction of undercoordinated In atoms, leading to an extended shallow state for x < 0.037, a variety of weakly and strongly localized states for 0.074 < x < 0.148, and a percolation-like network of single-atom chains of metallic In-In bonds for x > 0.185. The calculated carrier concentration increases from 3.3 x 10 …


Metallic Networks And Hydrogen Compensation In Highly Nonstoichiometric Amorphous In2 O3-X, Julia E. Medvedeva, E. Caputa-Hatley, I. Zhuravlev Feb 2022

Metallic Networks And Hydrogen Compensation In Highly Nonstoichiometric Amorphous In2 O3-X, Julia E. Medvedeva, E. Caputa-Hatley, I. Zhuravlev

Physics Faculty Research & Creative Works

The unique response of amorphous ionic oxides to changes in oxygen stoichiometry is investigated using computationally intensive ab initio molecular dynamics simulations, comprehensive structural analysis, and hybrid density-functional calculations for the oxygen defect formation energy and electronic properties of amorphous In2O3-x with x=0-0.185. In marked contrast to nonstoichiometric crystalline nanocomposites with clusters of metallic inclusions inside an insulating matrix, the lack of oxygen in amorphous indium oxide is distributed between a large fraction of undercoordinated In atoms, leading to an extended shallow state for x0.185. The calculated carrier concentration increases from 3.3x1020cm-3 at x=0.037 to 6.6x1020cm-3 at x=0.074 and decreases …


Characterization Of Single-Shot Attosecond Pulses With Angular Streaking Photoelectron Spectra, Xi Zhao, Siqi Li, Taran Driver, Van Hung Hoang, Anh-Thu Le, James P. Cryan, Agostino Marinelli, C. D. Lin Jan 2022

Characterization Of Single-Shot Attosecond Pulses With Angular Streaking Photoelectron Spectra, Xi Zhao, Siqi Li, Taran Driver, Van Hung Hoang, Anh-Thu Le, James P. Cryan, Agostino Marinelli, C. D. Lin

Physics Faculty Research & Creative Works

Most of the traditional attosecond pulse retrieval algorithms are based on a so-called attosecond streak camera technique, in which the momentum of the electron is shifted by an amount depending on the relative time delay between the attosecond pulse and the streaking infrared pulse. Thus, temporal information of the attosecond pulse is encoded in the amount of momentum shift in the streaked photoelectron momentum spectrogram S(p, τ), where p is the momentum of the electron along the polarization direction and τ is the time delay. An iterative algorithm is then employed to reconstruct the attosecond pulse from the streaking spectrogram. …


Stripe Order, Impurities, And Symmetry Breaking In A Diluted Frustrated Magnet, Xuecheng Ye, Rajesh Narayanan, Thomas Vojta Jan 2022

Stripe Order, Impurities, And Symmetry Breaking In A Diluted Frustrated Magnet, Xuecheng Ye, Rajesh Narayanan, Thomas Vojta

Physics Faculty Research & Creative Works

We investigate the behavior of the frustrated J1-J2 Ising model on a square lattice under the influence of random dilution and spatial anisotropies. Spinless impurities generate a random-field type disorder for the spin-density wave (stripe) order parameter. These random fields destroy the long-range stripe order in the case of spatially isotropic interactions. Combining symmetry arguments, percolation theory, and large-scale Monte Carlo simulations, we demonstrate that arbitrarily weak spatial interaction anisotropies restore the stripe phase. More specifically, the transition temperature Tc into the stripe phase depends on the interaction anisotropy ΔJ via Tc∼1/|ln(ΔJ)| for small …


Numerical Investigations Of 2-D Magnetic Nozzles On Pulsed Plasma Plumes, Joshua Daniel Burch Jan 2022

Numerical Investigations Of 2-D Magnetic Nozzles On Pulsed Plasma Plumes, Joshua Daniel Burch

Masters Theses

"This research presents studies of a novel type of magnetic nozzle that allows for three-dimensional (3-D) steering of a plasma plume. Numerical simulations were performed using Tech-X's USim® software to quantify the nozzle's capabilities. A2-D planar magnetic nozzle was applied to plumes of a nominal pulsed inductive plasma (PIP) source with discharge parameters similar to those of Missouri S&T's Missouri Plasmoid Experiment (MPX). Argon and xenon plumes were considered. Simulations were verified and validated through a mesh convergence study as well as comparison with available experimental data. Periodicity was achieved over the simulation run time and phase angle samples were …


Particle Swarm Optimization For Critical Experiment Design, Cole Michael Kostelac Jan 2022

Particle Swarm Optimization For Critical Experiment Design, Cole Michael Kostelac

Masters Theses

“Critical experiments are used by nuclear data evaluators and criticality safety engineers to validate nuclear data and computational methods. Many of these experiments are designed to maximize the sensitivity to a certain nuclide-reaction pair in an energy range of interest. Traditionally, a parameter sweep is conducted over a set of experimental variables to find a configuration that is critical and maximally sensitive. As additional variables are added, the total number of configurations increases exponentially and quickly becomes prohibitively computationally expensive to calculate, especially using Monte Carlo methods.

This work presents the development of a particle swarm optimization algorithm to design …


Several Problems In Nonlinear Schrödinger Equations, Tim Van Hoose Jan 2022

Several Problems In Nonlinear Schrödinger Equations, Tim Van Hoose

Masters Theses

“We study several different problems related to nonlinear Schrödinger equations….

We prove several new results for the first equation: a modified scattering result for both an averaged version of the equation and the full equation, as well as a set of Strichartz estimates and a blowup result for the 3d cubic problem.

We also present an exposition of the classical work of Bourgain on invariant measures for the second equation in the mass-subcritical regime”--Abstract, page iv.