Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 65

Full-Text Articles in Physical Sciences and Mathematics

Deep Virtual Pion Pair Production, Dilini Lakshani Bulumulla Aug 2023

Deep Virtual Pion Pair Production, Dilini Lakshani Bulumulla

Physics Theses & Dissertations

This experiment investigates the deep virtual production of both σ− and ρ− mesons, with a particular focus on the microscopic structure of the σ mesons. While the ρ meson is an ordinary qq¯ pair, the σ meson is composed of not only the typical qq¯ pair, making it a topic of controversy for nearly six decades. Although the existence of the σ− meson is now well established, its microscopic structure remains poorly understood. The primary objective of this thesis is to contribute to the understanding of the σ meson by analyzing its deep virtual production. The main focus of this …


Design And Construction Of A Longitudinally Polarized Solid Nuclear Target For Clas12, Victoria Lagerquist May 2023

Design And Construction Of A Longitudinally Polarized Solid Nuclear Target For Clas12, Victoria Lagerquist

Physics Theses & Dissertations

A new polarized nuclear target has been developed, constructed, and deployed at Jefferson Laboratory in Newport News, VA for use with the upgraded 12 GeV CEBAF (Continuous Electron Beam Accelerator Facility) accelerator and the Hall B CLAS12 (12 GeV CEBAF Large Acceptance Spectrometer) detector array. This ‘APOLLO’ (Ammonia POLarized LOngitudinally) target is a longitudinally polarized, solid ammonia, nuclear target which employs DNP (Dynamic Nuclear Polarization) to induce a net polarization in samples of protons (NH3) and deuterons (ND3) cooled to 1K via helium evaporation, held in a 5T polarizing field supplied by the CLAS12 spectrometer, and irradiated with 140 GHz …


Dual Energy Electron Storage Ring Cooler Design For Relativistic Ion Beams, Bhawin Dhital Dec 2022

Dual Energy Electron Storage Ring Cooler Design For Relativistic Ion Beams, Bhawin Dhital

Physics Theses & Dissertations

Collider experiments demand small beam emittances in order to achieve high luminosity. For light particles such as electrons, there exists a natural synchrotron radiation damping resulting in low emittance beams at equilibrium. In the case of heavy particle beams such as proton or ion beams, there is no significant synchrotron radiation damping effect and some cooling mechanism is needed to get to low emittance beams. A dual energy storage ring cooler is a novel concept proposed to cool hadron beams at higher energies. The design consists of two rings: a low energy ring and a high energy ring connected by …


Investigating Gluonic Operators In Coordinate Space, Wayne Henry Morris Iii May 2022

Investigating Gluonic Operators In Coordinate Space, Wayne Henry Morris Iii

Physics Theses & Dissertations

In this dissertation, a method of extracting gluon momentum distributions inside hadrons, and particularly nucleons, is developed. In general, the utility and application of performing calculations in coordinate space at the operator level is discussed, and its application to the method of pseudodistributions in the lattice extraction of parton distributions. An introduction to the background field method and other techniques used in the calculation of corrections to gluon operators are provided. Then, an outline of the calculation of the uncontracted gluon bilocal operator at one-loop is given, and the result thereof. Using the result for the gluon bilocal operator restricted …


Studies Of Bonus12 Radial Gem Detector And Tcs Beam Spin Asymmetry In Clas12, Jiwan Poudel May 2022

Studies Of Bonus12 Radial Gem Detector And Tcs Beam Spin Asymmetry In Clas12, Jiwan Poudel

Physics Theses & Dissertations

The Barely Offshell Nucleon Structure (BONuS12) experiment adopted the concept of spectator tagging technique to study the nearly-free neutron structure function F2n in the CLAS12 of Jefferson Lab. A novel Radial Time Projection Chamber (RTPC) detector was built, tested and integrated into the CLAS12 system to detect a back-moving low momentum tagged proton in d(e, ep)X deep-inelastic scattering. It was a 40 cm long gaseous detector consisting of 3 layers of cylindrical GEM foils for the charge amplification, with the data readout directly from the surrounding padboard. The RTPC detected the recoiling spectator proton, in coincidence with …


J/Ψ Photoproduction Near Threshold With Clas12, Joseph Newton Jul 2021

J/Ψ Photoproduction Near Threshold With Clas12, Joseph Newton

Physics Theses & Dissertations

The structure of the proton is comprised of quarks and a sea of gluons. A mechanism that can extract the characteristics of the hidden-color correlations of the nuclear wavefunction is the production of charm near threshold. Due to the fact that momentum transfer is large near threshold in the production of J/ψ , all three valence quarks must act coherently to ex- change energy for the reaction to occur. Models have been developed to predict the nature of J/ψ photoproduction at these specific energies. These include production mechanisms with the two-gluon and three-gluon exchanges. The transferred momentum dependence of the …


Spectator Proton Detection And Reconstruction In Deep Inelastic D(E,EpS) Scattering, David Payette Apr 2021

Spectator Proton Detection And Reconstruction In Deep Inelastic D(E,EpS) Scattering, David Payette

Physics Theses & Dissertations

A Radial Time Projection Chamber (RTPC) was designed and installed in Jefferson Lab's Hall B as part of the BONuS12 (Barely Off-shell Nucleon Structure) experiment. The goal of BONuS12 is to accurately measure the structure function of the neutron by scattering 11 GeV electrons and detecting them with the CLAS12 spectrometer. Deuterium gas was used as an effective neutron target, and the new RTPC was used to detect low- momentum spectator protons. Protons follow a curved path in the 5 Tesla solenoid that is part of CLAS12, ionizing the He-CO2 gas in an annular drift region surrounding the target. These …


Exploring Qcd Factorization At Moderate Energy Scales, Eric Alan Moffat Apr 2021

Exploring Qcd Factorization At Moderate Energy Scales, Eric Alan Moffat

Physics Theses & Dissertations

Asymptotic freedom in QCD facilitates the use of partonic degrees of freedom over short distances, but physical processes are sensitive to a wide range of scales. Thus, it is necessary in QCD calculations to utilize a factorization scheme to separate a process into perturbative and non-perturbative factors. This separation relies on an assumption that one energy scale is infinitely larger than the other scales involved in the process. However, much experimental research in areas such as nucleon structure and quark-hadron duality occur at more moderate energy scales where that basic assumption may not be true but perturbative calculations should still …


Measurement Of Pion-Pion Final State Interactions In Η → Π +Π −Γ With Clas At Jefferson Lab, Torri C. Jeske Dec 2020

Measurement Of Pion-Pion Final State Interactions In Η → Π +Π −Γ With Clas At Jefferson Lab, Torri C. Jeske

Physics Theses & Dissertations

Decays of pseudoscalar mesons proceed from the chiral anomaly, which arises from spontaneous chiral symmetry breaking. In the limit of massless quarks (chiral limit), the η → π +π −γ the decay width is determined solely by the box anomaly term in the Wess Zumino Witten Lagrangian. Since the physical quarks are not massless, the decay region of the η meson is far from the chiral limit and thus proper inclusion of the momentum dependence is essential to reproduce the measured decay width. Several theoretical frameworks have been proposed to describe these interactions. We report a new measurement of the …


Deeply Virtual Compton Scattering At Hall A, Jefferson Lab, Mohamed Nuhman Hashir Rashad Dec 2020

Deeply Virtual Compton Scattering At Hall A, Jefferson Lab, Mohamed Nuhman Hashir Rashad

Physics Theses & Dissertations

The Standard Model of particle physics defines quarks and leptons as the basic building blocks of all matter. The interaction between them are mediated by force carrying gauge bosons. Quantum ChromoDynamics (QCD), the theory that explains the strong interaction is still not complete enough to derive the physical observables of a Quark-Gluon system from the fundamental degrees of freedom of it’s constituents. Experimentally observable single particle densities provide important insights into our understanding of the quark-gluon system and hence help fill in the gaps of QCD. Generalized Parton Distributions (GPDs) provide simultaneous information of both spacial and longitudinal momentum distributions …


Simulation And Development Of The Radial Time Projection Chamber For The Bonus12 Experiment In Clas12, Nathan M. Dzbenski Aug 2020

Simulation And Development Of The Radial Time Projection Chamber For The Bonus12 Experiment In Clas12, Nathan M. Dzbenski

Physics Theses & Dissertations

Knowledge of the structure of nucleons (i:e: protons and neutrons) is a central topic of interest to nuclear/particle physicists. Much more is known about the structure of the proton than the neutron due to the lack of high-density free neutron targets. The Barely Off-shell Nucleon Structure experiment (BONuS12) at Jefferson Lab (JLab) is a second generation experiment upgraded/optimized to advance our knowledge of the neutron's structure using the deep-inelastic scattering of electrons off deuterium. Typically, since deuterium is a nuclear target, corrections for off-shell and nuclear binding effects must be taken into account in order to extract results on the …


Validation Of Neutrino Energy Estimation Using Electron Scattering Data, Mariana Khachatryan Oct 2019

Validation Of Neutrino Energy Estimation Using Electron Scattering Data, Mariana Khachatryan

Physics Theses & Dissertations

To study neutrino oscillations, the knowledge of the initial neutrino energy is required. This energy cannot be determined directly because neutrino beams have a broad energy distribution. Instead, the initial energy for each event is estimated from the final state particles of a neutrino-nucleus interaction using two main approaches. It can be determined either from the total energy of all the final state particles or, if the neutrino scatters quasi-elastically from a bound nucleon, then the initial energy can be calculated approximately using the scattered angle and energy of the outgoing charged lepton. This requires a detailed understanding of neutrino-nucleus …


Ion Bunch Formation Strategies For The Jleic Collider, Bamunuvita Randika Prasad Gamage Jul 2018

Ion Bunch Formation Strategies For The Jleic Collider, Bamunuvita Randika Prasad Gamage

Physics Theses & Dissertations

An Electron-Ion Collider (EIC) has been proposed and supported as the next major nuclear physics facility in the United States, with very high design luminosities of 1033 − 1034 cm−2 s−1. The Jefferson Lab EIC concept, JLEIC, includes construction of a new ion beam accelerator complex. To achieve the required luminosity, the JLEIC ion collider requires unprecedentedly short ion bunches of 1 cm length at a high repetition frequency of 476 MHZ. However, only much longer ion bunches are formed by the ion injector complex producing beams for the collider ring. Formation of short ion …


Crab Cavity Requirements For The Jefferson Lab Electron-Ion Collider, Salvador Isaac Sosa Güitrón Jan 2018

Crab Cavity Requirements For The Jefferson Lab Electron-Ion Collider, Salvador Isaac Sosa Güitrón

Physics Theses & Dissertations

An Electron-Ion Collider (EIC) has been proposed to be the next large facility to explore the dynamics of quarks and gluons inside nuclei. A conceptual design for a Jefferson Lab Electron-Ion Collider (JLEIC) is being developed. It is based on the CEBAF 12 GeV machine as a full energy electron beam injector. Two crucial requirements of JLEIC are high luminosity in the 1034 cm-2s-1 range, and full acceptance detection of particles. The full acceptance requirement relies on having the beams collide at a relatively large crossing angle of 50 mrad. Such a large crossing angle, however, …


Nuclear Chiral Axial Currents And Applications To Few-Nucleon Systems, Alessandro Baroni Jul 2017

Nuclear Chiral Axial Currents And Applications To Few-Nucleon Systems, Alessandro Baroni

Physics Theses & Dissertations

This Thesis is divided into three main parts. The first part discusses basic aspects of chiral effective field theory and the formalism, based on time ordered perturbation theory, used to to derive the nuclear potentials and currents from the chiral Lagrangians. The second part deals with the actual derivation, up to one loop, of the two-nucleon potential and one- and two-nucleon weak axial charge and current. In both derivations ultraviolet divergences generated by loop corrections are isolated using dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. A complete …


R&D Of A High-Performance Dirc Detector For A Future Electron-Ion Collider, Stacey Lee Allison Jul 2017

R&D Of A High-Performance Dirc Detector For A Future Electron-Ion Collider, Stacey Lee Allison

Physics Theses & Dissertations

An Electron-Ion Collider (EIC) is proposed as the next big scientific facility to be built in the United States, costing over $1 billion in design and construction. Each detector concept for the electron/ion beam interaction point is integrated into a large solenoidal magnet. The necessity for excellent hadronic particle identification (pion/kaon/proton) in the barrel region of the solenoid has pushed research and development (R&D) towards a new, high-performance Detection of Internally Reflected Cherenkov light (DIRC) detector design. The passage of a high energy charged particle through a fused silica bar of the DIRC generates optical Cherenkov radiation. A large fraction …


Instrument Design Optimization With Computational Methods, Michael H. Moore Jul 2017

Instrument Design Optimization With Computational Methods, Michael H. Moore

Physics Theses & Dissertations

Using Finite Element Analysis to approximate the solution of differential equations, two different instruments in experimental Hall C at the Thomas Jefferson National Accelerator Facility are analyzed. The time dependence of density fluctuations from the liquid hydrogen (LH2) target used in the Qweak experiment (2011-2012) are studied with Computational Fluid Dynamics (CFD) and the simulation results compared to data from the experiment. The 2.5 kW liquid hydrogen target was the highest power LH2 target in the world and the first to be designed with CFD at Jefferson Lab. The first complete magnetic field simulation of the Super High Momentum …


Searching For Heavy Photons With Detached Vertices In The Heavy Photon Search Experiment, Holly Szumila-Vance Jul 2017

Searching For Heavy Photons With Detached Vertices In The Heavy Photon Search Experiment, Holly Szumila-Vance

Physics Theses & Dissertations

The Jefferson Lab Heavy Photon Search (HPS) experiment is searching for a hypothetical massive particle called the heavy photon which could mediate a dark electromagnetic-type force. If heavy photons kinetically mix with Standard Model photons, they may be radiated by electrons scattering from a heavy nucleus and then decay to e+e- pairs. HPS uniquely searches for heavy photons that either decay at the target or a measurable distance after. The experiment utilizes a silicon vertex tracker (SVT) for momentum and vertex reconstruction, together with an electromagnetic calorimeter for measuring particle energies and triggering events. The HPS experiment took its first …


Test Of New Readout Electronics For The Bonus12 Experiment, Mathieu Ehrhart Jul 2017

Test Of New Readout Electronics For The Bonus12 Experiment, Mathieu Ehrhart

Physics Theses & Dissertations

For decades, electron-proton scattering experiments have been providing a large amount of data on the proton structure function. However, because of the instability of free neutrons, fewer experiments have been able to study the neutron structure function. The BONuS collaboration at Jefferson Laboratory addresses this challenge by scattering electrons off a deuterium target, using a RTPC capable of detecting the low-momentum spectator protons near the target. Events of electrons scattering on almost free neutrons are selected by constraining the spectator protons to very low momenta and very backward scattering angles. In 2005, BONuS successfully measured the neutron structure with scattering …


Photoproduction And Radiative Decay Of Ηt Meson In Clas At Jlab, Georgie Mbianda Njencheu Apr 2017

Photoproduction And Radiative Decay Of Ηt Meson In Clas At Jlab, Georgie Mbianda Njencheu

Physics Theses & Dissertations

In this work the η/ meson photoproduction cross sections as well as the distribution of the di-pion invariant mass, m(π+π), in the radiative decay mode η/ → π+πγ have been measured using the CLAS detector at the Thomas Jefferson National Accelerator Facility using tagged incident photons in the center-of-mass energy range 1.96 GeV - 2.72 GeV. The measurements are performed on a liquid hydrogen target in the reaction γp → pη/(η/ → π+πγ). The analysis is based on the …


Electroproduction Of Neutral Pion Off Helium-4, Bayram Torayev Oct 2016

Electroproduction Of Neutral Pion Off Helium-4, Bayram Torayev

Physics Theses & Dissertations

Deeply virtual exclusive processes offer a unique opportunity to study the internal structure of the nucleon and nuclei. The goal of this work is to extract the beam-spin asymmetry in deeply virtual coherent neutral pion electroproduction, e4He → e′4He′π0, using the CLAS detector in the experimental Hall B at Thomas Jefferson National Accelerator Facility. The data were collected in 2009 with a 6 GeV longitudinally polarized electron beam impinging on a 30 cm long, 6 atm Helium-4 gaseous target. In order to ensure that the process is coherent, a new Radial Time Projection Chamber …


Studies Of Two-Nucleon Interactions And Few-Body Electromagnetic Structure In Chiral Effective Field Theory, Maria Piarulli Jul 2015

Studies Of Two-Nucleon Interactions And Few-Body Electromagnetic Structure In Chiral Effective Field Theory, Maria Piarulli

Physics Theses & Dissertations

A coordinate-space nucleon-nucleon potential is constructed in chiral effective field theory (χEFT) retaining pions, nucleons and Δ-isobars as explicit degrees of freedom. The calculation of the potential is carried out by including one-and two-pion-exchange contributions up to next-to-next-to-leading order (N2LO) and contact interactions tip to next-to-next-to-next-to-leading order (N3LO). The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database in the laboratory-energy range 0–300 MeV. Three versions of this chiral potential, corresponding to three different cutoffs, have been developed. The cutoff regularizes the one- and two-pion exchange as well as the contact part of the potential. A …


Measurement Of Single And Double Spin Asymmetries In Semi-Inclusive Deep-Inelastic Scattering On Proton And Deuteron, Suman Bandhu Koirala Jul 2014

Measurement Of Single And Double Spin Asymmetries In Semi-Inclusive Deep-Inelastic Scattering On Proton And Deuteron, Suman Bandhu Koirala

Physics Theses & Dissertations

The EG1-DVCS experiment with CLAS at Jefferson Lab collected semi-inclusive pion electro-production data on longitudinally polarized solid state NH3 and ND3 targets with longitudinally polarized electrons of approximately 6 GeV energy. Data on all three pion channels, π +, π– and π0, were collected simultaneously. The charged pions were identified by their time-of-flight information whereas the neutral pions were reconstructed from the invariant mass of two photons. The experiment covered a wide kinematic range: 1 GeV 2Q2 ≤ 3.2 GeV2, 0.12 ≤ xB ≤ 0.48, 0.0 GeV ≤ Ph⊥ …


Direct Measurements Of Two Photon Exchange On Lepton-Proton Elastic Scattering Using Simultaneous Electron-Positron Beams In Clas, Dasuni Kalhari Adikaram Apr 2014

Direct Measurements Of Two Photon Exchange On Lepton-Proton Elastic Scattering Using Simultaneous Electron-Positron Beams In Clas, Dasuni Kalhari Adikaram

Physics Theses & Dissertations

The electric (GE) and magnetic ( GM) form factors of the proton are fundamental observables which characterize its charge and magnetization distributions. There are two methods to measure the proton form factors: the Rosenbluth separation method and the polarization transfer technique. However, the ratio of the electric and magnetic form factors measured by those methods significantly disagree at momentum transfer Q2 > 1 GeV2. The most likely explanation of this discrepancy is the inclusion of two-photon exchange (TPE) amplitude contributions to the elastic electron-proton cross section which significantly changes the extraction of GE from the …


Photoproduction Of Π0 On Hydrogen With Clas From 1.1 Gev - 5.45 Gev Using E+E –Γ Decay, Michael C. Kunkel Jan 2014

Photoproduction Of Π0 On Hydrogen With Clas From 1.1 Gev - 5.45 Gev Using E+E –Γ Decay, Michael C. Kunkel

Physics Theses & Dissertations

Photoproduction of the π0 meson was studied using the CLAS detector at the Thomas Jefferson National Accelerator Facility using tagged incident photon energies spanning the range Eγ = 1.1 GeV - 5.45 GeV. The measurement is performed on a liquid hydrogen target in the reaction γppe +e(γ). The final state of the reaction is the sum of two subprocesses for π0 decay, the Dalitz decay mode of π0e +eγ and conversion mode where one photon from π0 → γγ decay is converted into a …


Measurement Of The Spin Structure Function Gd1 Of The Deuteron And Its Moments At Low Q2, Krishna P. Adhikari Oct 2013

Measurement Of The Spin Structure Function Gd1 Of The Deuteron And Its Moments At Low Q2, Krishna P. Adhikari

Physics Theses & Dissertations

Double polarization cross section differences (Δσ ||) for proton and deuteron targets have been measured in the EG4 experiment using the CLAS detector at Jefferson Lab. Longitudinally polarized electron beams at relatively low energies of 1.056, 1.337, 1.989, 2.256 and 3.0 GeV from the CEBAF accelerator were scattered off longitudinally polarized NH3 and ND3 targets. Scattered electrons were recorded at very low scattering angles (down to θ= 6°) with the help of a new dedicated Cherenkov counter and a special magnetic field setting of the CLAS detector in order to measure the cross section differences in the …


Double Spin Asymmetry In D →(E→E'P)N, Michael Mayer Apr 2013

Double Spin Asymmetry In D →(E→E'P)N, Michael Mayer

Physics Theses & Dissertations

Using the CLAS detector at Jefferson Lab, double spin asymmetries (A ∥) for quasi-elastic electron scattering off the deuteron have been measured at several beam energies. The data were collected during the EG1 experiment, which scattered longitudinally polarized electrons with energies from 1.6 to 5.8 GeV off a longitudinally polarized cryogenic ND3 target. The double spin asymmetries were measured as a function of photon virtuality Q2 (0.13-3.17 (GeV/c)2), missing momentum (0.0-0.5 GeV/c), and the angle between the (inferred) "spectator" neutron and the momentum transfer direction (θng). The results from EG1b are compared with a recent model …


Spin Dependence In Polarized Proton-Proton Elastic Scattering At Rhic, Donika Plyku Apr 2013

Spin Dependence In Polarized Proton-Proton Elastic Scattering At Rhic, Donika Plyku

Physics Theses & Dissertations

The STAR (Solenoidal Tracker At RHIC - Relativistic Heavy Ion Collider) experiment is equipped with Roman Pots, insertion devices that allow detectors to be moved close to the beam for the measurement of high energy protons scattered at very small angles. This setup, together with the unique capability of RHIC to collide spin-polarized proton beams, allows STAR to study both the dynamics and the spin-dependence of the proton-proton ( pp) elastic scattering process. Silicon strip detectors, installed inside the Roman Pots, measure tracks of protons scattered diffractively at very small angles. In a dedicated run with special beam optics …


Measurement Of Polarized Proton-Proton Elastic Scattering At The Relativistic Heavy Ion Collider (Rhic), Ivan Koralt Jan 2013

Measurement Of Polarized Proton-Proton Elastic Scattering At The Relativistic Heavy Ion Collider (Rhic), Ivan Koralt

Physics Theses & Dissertations

Elastic proton-proton (pp) scattering is one of the most fundamental processes in nature and yet, it is one of the most difficult to describe. There are two interactions involved in this process: electromagnetic (Coulomb) and hadronic (strong) interactions. Underlying exchange mechanisms of these two interactions are the virtual photon and the Pomeron exchange, respectively. The difficulty of elastic pp scattering arises from the fact that the nature of the Pomeron and its exchange are not well understood and need a theoretical approach, which is still under development.

At the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab …


Single And Double Spin Asymmetries For Pion Electro-Production From The Deuteron In The Resonance Region, Sharon L. Careccia Apr 2012

Single And Double Spin Asymmetries For Pion Electro-Production From The Deuteron In The Resonance Region, Sharon L. Careccia

Physics Theses & Dissertations

The single and double spin asymmetries At and Aet have been measured in π- electro-production off the deuteron using a longitudinally polarized electron beam and a polarized ND3 target. The electron beam was polarized using a strained GaAs cathode and the target was polarized using Dynamic Nuclear Polarization. The data were collected at beam energies of 1.6, 1.7, 2.5 and 4.2 GeV in Hall B at Jefferson Lab in the spring of 2001. The final state particles were detected in the CEBAF Large Acceptance Spectrometer (CLAS). The d(e,e'π-p)p exclusive channel was identified using the missing mass …