Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Mixing It Up In The Ocean Carbon Cycle And The Removal Of Refractory Dissolved Organic Carbon, Yuan Shen, Ronald Benner Feb 2018

Mixing It Up In The Ocean Carbon Cycle And The Removal Of Refractory Dissolved Organic Carbon, Yuan Shen, Ronald Benner

Faculty Publications

A large quantity of reduced carbon is sequestered in the ocean as refractory dissolved molecules that persist through several circuits of global overturning circulation. Key aspects of the cycling of refractory dissolved organic carbon (DOC) remain unknown, making it challenging to predict how this large carbon reservoir will respond to climate change. Herein we investigate mechanisms that remove refractory DOC using bioassay experiments with DOC isolated from surface, mesopelagic and deep waters of the Atlantic Ocean. The isolated DOC was refractory to degradation by native microbial communities, even at elevated concentrations. However, when the refractory DOC was introduced to a …


Marine Sequestration Of Carbon In Bacterial Metabolites, Oliver J. Lechtenfeld, Norbert Hertkorn, Yuan Shen, Matthias Witt, Ronald Benner Mar 2015

Marine Sequestration Of Carbon In Bacterial Metabolites, Oliver J. Lechtenfeld, Norbert Hertkorn, Yuan Shen, Matthias Witt, Ronald Benner

Faculty Publications

Linking microbial metabolomics and carbon sequestration in the ocean via refractory organic molecules has been hampered by the chemical complexity of dissolved organic matter (DOM). Here, using bioassay experiments and ultra-high resolution metabolic profiling, we demonstrate that marine bacteria rapidly utilize simple organic molecules and produce exometabolites of remarkable molecular and structural diversity. Bacterial DOM is similar in chemical composition and structural complexity to naturally occurring DOM in sea water. An appreciable fraction of bacterial DOM has molecular and structural properties that are consistent with those of refractory molecules in the ocean, indicating a dominant role for bacteria in shaping …


A Supramolecular Strategy To Assemble Multifunctional Viral Nanoparticles, Limin Chen, Xia Zhao, Yuan Lin, Yubin Huang, Qian Wang Aug 2013

A Supramolecular Strategy To Assemble Multifunctional Viral Nanoparticles, Limin Chen, Xia Zhao, Yuan Lin, Yubin Huang, Qian Wang

Faculty Publications

Using a one-pot approach driven by the supramolecular interaction between β-cyclodextrin and adamantyl moieties, multifunctional viral nanoparticles can be facilely formulated for biomedical applications.


Electrospinning Fabrication, Structural And Mechanical Characterization Of Rod-Like Virus-Based Composite Nanofibers, Laying Wu, Jianfeng Zang, L. Andrew Lee, Zhongwei Niu, Gary C. Horvatha, Vaughn Braxtona, Arief C. Wibowo, Michael A. Bruckman, Soumitra Ghoshroy, Hans-Conrad Zur Loye, Xiaodong Li, Qian Wang Mar 2011

Electrospinning Fabrication, Structural And Mechanical Characterization Of Rod-Like Virus-Based Composite Nanofibers, Laying Wu, Jianfeng Zang, L. Andrew Lee, Zhongwei Niu, Gary C. Horvatha, Vaughn Braxtona, Arief C. Wibowo, Michael A. Bruckman, Soumitra Ghoshroy, Hans-Conrad Zur Loye, Xiaodong Li, Qian Wang

Faculty Publications

Tobacco mosaic virus (TMV) was electrospun with polyvinyl alcohol (PVA) into continuous TMV–PVA composite nanofibers to form a biodegradable nonwoven fibrous mat as an extracellular matrix (ECM) mimetic. Morphological characterizations by electron microscopyshowed that the addition of varying amounts of TMV resulted in homogeneous nanofibers without phase separation and did not change the diameter of the composite nanofibers. The orientation of TMV in as-spun fibers could be readily controlled and post-processing of the nonwoven TMV–PVA mat significantly improved its water resistance. In addition, tensile tests were performed on individual nanofibers, which revealed that the TMV–PVA composite nanofibers achieved a comparable …


Controlled Assembly Of Rodlike Viruses With Polymers, Tao Li, Laying Wu, Nisaraporn Suthiwangcharoen, Michael A. Bruckman, Dayton Cash, Joan S. Hudson, Soumitra Ghoshroy, Qian Wang Apr 2009

Controlled Assembly Of Rodlike Viruses With Polymers, Tao Li, Laying Wu, Nisaraporn Suthiwangcharoen, Michael A. Bruckman, Dayton Cash, Joan S. Hudson, Soumitra Ghoshroy, Qian Wang

Faculty Publications

A practical method to assemble rodlike tobacco mosaic virus and bacteriophage M13 with polymers was developed, which afforded a 3D core–shell composite with morphological control.


Oriented Cell Growth On Self-Assembled Bacteriophage M13 Thin Films, Jianhua Rong, L. Andrew Lee, Kai Li, Brandon Harp, Charlene M. Mello, Zhongwei Niu, Qian Wang Sep 2008

Oriented Cell Growth On Self-Assembled Bacteriophage M13 Thin Films, Jianhua Rong, L. Andrew Lee, Kai Li, Brandon Harp, Charlene M. Mello, Zhongwei Niu, Qian Wang

Faculty Publications

Fibrillar M13 bacteriophages were used as basic building blocks to generate thin films with aligned nanogrooves, which, upon chemical grafting with RGD peptides, guide cell alignment and orient the cell outgrowth along defined directions.