Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 53

Full-Text Articles in Physical Sciences and Mathematics

Atomic-Level Mechanisms Of Fast Relaxation In Metallic Glasses, Leo W. Zella Dec 2023

Atomic-Level Mechanisms Of Fast Relaxation In Metallic Glasses, Leo W. Zella

Doctoral Dissertations

Glasses are ubiquitous in daily life and have unique properties which are a consequence of the underlying disordered structure. By understanding the fundamental processes that govern these properties, we can modify glasses for desired applications. Key to understanding the structure-dynamics relationship in glasses is the variety of relaxation processes that exist below the glass transition temperature. Though these relaxations are well characterized with macroscopic experimental techniques, the microscopic nature of these relaxations is difficult to elucidate with experimental tools due to the requirements of timescale and spatial resolution. There remain many questions regarding the microscopic nature of relaxation in glass …


The Synthesis And Optimization Of Sulfide And Halide Solid Electrolytes For All Solid-State Batteries, Teerth Brahmbhatt Aug 2023

The Synthesis And Optimization Of Sulfide And Halide Solid Electrolytes For All Solid-State Batteries, Teerth Brahmbhatt

Doctoral Dissertations

Countries and organizations around the world have established ambitious targets to transition away from fossil fuel-based energy sources and devices. The transition is focused on cleaning up power generation by converting coal, natural gas, and oil-based power generation to renewables and nuclear energy. Decarbonizing other sectors of energy use, transportation for example, will require broader electrification. To drive this move away from fossil fuel powered transportation will require portable energy storage devices. Conventional lithium-ion batteries are a popular candidate to lead this shift. However, these batteries often rely on flammable liquid electrolytes and carbon anodes that suffer from low energy …


Functional Bottlebrush Polymer Additives For Thin Films And Coatings, Travis S. Laws Aug 2022

Functional Bottlebrush Polymer Additives For Thin Films And Coatings, Travis S. Laws

Doctoral Dissertations

Bottlebrush polymers are a class of highly branched polymers consisting of polymeric side chains that are densely grafted to a linear backbone. Their highly branched architecture results in surface enrichment across a broad range of materials. The goal of my research has been centered around the design of functional bottlebrush polymers and their use as surface active additives in blend films and coatings.

In the first chapter, we examine the segregation behavior of polystyrene bottlebrushes that are blended with linear polystyrene. We systematically vary the lengths of the bottlebrush backbone (Nb), side-chain (Nsc), and the linear matrix (Nm) in order …


How Dynamic Bond Results In The Unique Viscoelastic Behavior Of The Associating Polymers, Sirui Ge Aug 2022

How Dynamic Bond Results In The Unique Viscoelastic Behavior Of The Associating Polymers, Sirui Ge

Doctoral Dissertations

Associating polymer is a special kind of polymer possessing transient reversible bonds in addition to the conventional covalent bonds. The reversible bonds provide unique dynamics and fascinating viscoelastic properties, resulting in attractive applications for these polymers, such as self-healing and shape memory materials. Despite many years of studies, the understanding of dynamics of polymers with reversible bonds, especially on molecular level, is still in the rudimentary stage, preventing the rational design of the potential novel functional materials based on associating polymers. In this dissertation, we provide a detailed and quantitative understanding of the dynamics and viscoelastic properties of associating polymers. …


Direct Calculation Of Configurational Entropy: Pair Correlation Functions And Disorder, Clifton C. Sluss Aug 2022

Direct Calculation Of Configurational Entropy: Pair Correlation Functions And Disorder, Clifton C. Sluss

Doctoral Dissertations

Techniques such as classical molecular dynamics [MD] simulation provide ready access to the thermodynamic data of model material systems. However, the calculation of the Helmholtz and Gibbs free energies remains a difficult task due to the tedious nature of extracting accurate values of the excess entropy from MD simulation data. Thermodynamic integration, a common technique for the calculation of entropy requires numerous simulations across a range of temperatures. Alternative approaches to the direct calculation of entropy based on functionals of pair correlation functions [PCF] have been developed over the years. This work builds upon the functional approach tradition by extending …


Polynorbornenes For Advanced Applications And Processes, Xinyi Wang Aug 2022

Polynorbornenes For Advanced Applications And Processes, Xinyi Wang

Doctoral Dissertations

Polynorbornenes have dramatically different properties and various applications depending on their chemical structures. The modular nature of norbornene-based systems provides a facile route toward synthesizing diverse polymeric materials, thus making them ideal materials for systematic structure-property investigations. Herein, their application as gas separation membranes and the correlation between their gas-transport properties and polymer structures will be investigated. Though many valuable correlations between gas-permeability and polynorbornene structure have been studied previously, many of these efforts have focused heavily on designing materials with various chemical structures to achieve high permeabilities. In contrast, the influence of molecular structure on: a) polynorbornene chain packing …


Chiral Mesogen-Free Liquid Crystalline Polyethers With Sulfonylated Side Chains And Patchy Brush Nanoparticles, Caleb A. Bohannon May 2022

Chiral Mesogen-Free Liquid Crystalline Polyethers With Sulfonylated Side Chains And Patchy Brush Nanoparticles, Caleb A. Bohannon

Doctoral Dissertations

Ferroelectric liquid crystalline polymers (LCPs) hold promise for various applications driven by low electric fields, e.g., electrocaloric materials, because of the higher molecular motion in the liquid crystalline (LC) state. However, traditional chiral smectic C (SmC*) LCPs exhibit small spontaneous polarizations due to the bulky aromatic mesogens and weak polar groups. This dissertation research is focused on the design of mesogen-free sulfonylated LCPs with a goal of seeking the ferroelectric SmC* phase. Such LCPs are expected to exhibit high polarizations owing to the sulfonyl’s large dipole moment. A series of poly(oxypropylene)s (POPs), with chirality being introduced into either the backbone …


Interfaces And Dynamics In Polymeric 3d Printing And Crystalline Polymer Blends, Stevenson C. Perryman Dec 2021

Interfaces And Dynamics In Polymeric 3d Printing And Crystalline Polymer Blends, Stevenson C. Perryman

Doctoral Dissertations

This dissertation presents experimental work that provide a foundation to rationally improve fused filament fabrication (FFF) and immiscible blend compatibilization. Objects generated from additive manufacturing processes, such as FFF, have intrinsic structural weaknesses which include two project specific examples: structural anisotropy and irreversible thermal strain. Due to low adhesion between individual print layers that results in macroscopic defects, the mechanical strength of printed objects when force is applied perpendicular to the build orientation is drastically reduced. In the first dissertation chapter, we present a protocol to produce interlayer covalent bonds by depositing multi-amine additives between individual layers of a print …


Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou Aug 2021

Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou

Doctoral Dissertations

The motivation of this work comes from one of the major problems of emerging non-aqueous flow battery (NAFB) that a separator or membrane which facilitates conductivity and blocks redox species crossover does not exist. Although many aspects of principles can be mirrored from mature fuel cell and aqueous flow battery, it is found that some well-defined membrane properties in aqueous systems such as swelling, transport and interactions are different in non-aqueous solvents to some extent. However, the approach of this work does follow the way perfluorosulfonate ion exchange membrane (PFSA) facilitated development of fuel cell and aqueous flow battery in …


Development Of Density-Functional Tight-Binding Methods For Chemical Energy Science, Quan Vuong Aug 2021

Development Of Density-Functional Tight-Binding Methods For Chemical Energy Science, Quan Vuong

Doctoral Dissertations

Density-functional tight-binding (DFTB) method is an approximation to the popular first-principles density functional theory (DFT) method. Recently, DFTB has gained considerable visibility due to its inexpensive computational requirements that confer it the capability of sustaining long-timescale reactive molecular dynamics (MD) simulations while providing an explicit description of electronic structure at all time steps. This capability allows the description of bond formation and breaking processes, as well as charge polarization and charge transfer phenomena, with accuracy and transferability beyond comparable classical reactive force fields. It has thus been employed successfully in the simulation of many complex chemical processes. However, its applications …


Local Dynamics And Atomic-Level Structures In Metallic Liquids And Glasses, Zengquan Wang May 2021

Local Dynamics And Atomic-Level Structures In Metallic Liquids And Glasses, Zengquan Wang

Doctoral Dissertations

Structure and dynamics at the atomic level in metallic glasses and liquids are poorly understood when compared to the crystalline solids. For instance, even though viscosity is the basic property of liquids, its atomistic origin is not well elucidated. Also, the physics of the fragility of liquids and the crossover phenomenon is far from full understanding. Earlier, through molecular dynamics (MD) simulations a direct connection was found between the timescale describing the macroscopic viscous behavior, the Maxwell relaxation time (tM = h/G, h is the shear viscosity and G is the high-frequency shear modulus) and …


Susceptibility Of Riverine Fishes To Anthropogenically-Linked Trauma: Strikes From Hydropower Turbine Blades, Ryan K. Saylor May 2021

Susceptibility Of Riverine Fishes To Anthropogenically-Linked Trauma: Strikes From Hydropower Turbine Blades, Ryan K. Saylor

Doctoral Dissertations

Hydropower accounts for nearly 40% of renewable electricity generation in the US; however, dams significantly impact the surrounding aquatic ecosystems. One of the most visible impacts of hydropower―beyond the dam itself―is the direct negative impacts (injury or death) to fish populations that must pass through hydropower turbines to access desired downstream habitat. During passage, fishes face many potential stressors that can cause severe injuries and often leads to high rates of mortality. In this dissertation, I have focused on quantifying how fishes respond to impacts from turbine blades that may occur during turbine passage. Laboratory research into blade strike impact …


Stretching The Applications Of Biomass: Development Of Lignin Based Thermoplastic Elastomers And Composite Materials, Anthony Stephen Bova May 2021

Stretching The Applications Of Biomass: Development Of Lignin Based Thermoplastic Elastomers And Composite Materials, Anthony Stephen Bova

Doctoral Dissertations

Bio-based plastics and composites have seen increased industry adoption in recent years due to growing demand for materials with a low carbon footprint. The use of lignin as a feedstock for polymers has seen growing interest as the concept of an integrated cellulosic biorefinery gains traction and advances the need to use all components of separated biomass for value-added applications. Historically, use of lignin in thermoplastic and elastomeric copolymers and blends has been bottlenecked by the inability to introduce lignin content above 30 weight percent due to difficulties with interfacial adhesion of lignin with other soft segments. Efforts to overcome …


Local Structure And Dynamic Studies Of Mixed Ch4-Co2 Gas Hydrates Via Computational Simulation And Neutron Scattering, Bernadette Rita Cladek Dec 2020

Local Structure And Dynamic Studies Of Mixed Ch4-Co2 Gas Hydrates Via Computational Simulation And Neutron Scattering, Bernadette Rita Cladek

Doctoral Dissertations

Permeated throughout the ocean floor and arctic permafrost, natural gas hydrates contain an estimated 3000 trillion cubic meters, over three times that of traditional shale deposits, of CH4 that is accessible for extraction. Gas hydrates are a crystal structure in which water molecules form a cage network, the host, through hydrogen bonds while trapping a guest molecule such as CH4 in the cavities. These compounds form naturally where the appropriate low temperature and high pressure conditions occur. A promising and tested method of methane recovery is through exchange with CO2, which energetically takes place of the …


Characterization Of A Digital Holography Diagnostic For In Situ Erosion Measurement Of Plasma-Facing Components In Fusion Devices, Cary Dean Smith Dec 2020

Characterization Of A Digital Holography Diagnostic For In Situ Erosion Measurement Of Plasma-Facing Components In Fusion Devices, Cary Dean Smith

Doctoral Dissertations

Fusion energy devices, particularly tokamaks, face the challenge of interior surface damage occurring over time from the heat flux of the high-energy plasma they generate. The ability to monitor the rate of surface modification is therefore imperative, but to date no proven technique exists for real-time erosion measurement of planar regions of interest on plasma-facing components in fusion devices. In order to fill this diagnostic gap, a digital holography system has been established at ORNL [Oak Ridge National Laboratory] for the purpose of measuring the erosion effects of plasma-material interaction in situ.

The diagnostic has been designed with the …


Resource-Saving Technologies For The Production Of Elastic Leather Materials: Collective Monograph, Olena Korotych, Anatolii Danylkovych, Serhii Bilinskyi, Serhii Bondarenko, Slava Branovitska, Vasyl Chervinskyi, Nataliia Khliebnikova, Alona Kudzieva, Viktor Lishchuk, Nataliia Lysenko, Olena Mokrousova, Nataliia Omelchenko, Vera Palamar, Yuliia Potakh, Oksana Romanyuk, Olga Sanginova, Oleksandr Zhyhotsky Oct 2020

Resource-Saving Technologies For The Production Of Elastic Leather Materials: Collective Monograph, Olena Korotych, Anatolii Danylkovych, Serhii Bilinskyi, Serhii Bondarenko, Slava Branovitska, Vasyl Chervinskyi, Nataliia Khliebnikova, Alona Kudzieva, Viktor Lishchuk, Nataliia Lysenko, Olena Mokrousova, Nataliia Omelchenko, Vera Palamar, Yuliia Potakh, Oksana Romanyuk, Olga Sanginova, Oleksandr Zhyhotsky

Chemistry Publications and Other Works

This monograph contains a collection of recent research papers focusing on advancing existing technologies and developing new technologies to improve the environmentally friendliness and save resources during the production of elastic leather materials. The papers are organized based on the type of technological process used to preserve raw hides. A lot of attention is devoted to mathematical planning, simulations, and multicriteria optimization of the technological processes using newly developed chemical reagents. The monograph contains a complex study of physicochemical properties and characteristics of the resulting leather materials. The developed technologies were tested by the private joint-stock company Chinbar (Kyiv, Ukraine) …


Development Of High-Performing Polydimethylsiloxane-Based Membranes For Carbon Dioxide Separation, Tao Hong Dec 2017

Development Of High-Performing Polydimethylsiloxane-Based Membranes For Carbon Dioxide Separation, Tao Hong

Doctoral Dissertations

Membrane separation is highlighted as one of the most promising approaches to mitigate the excessive CO2 [carbon dioxide] emission, due to its significant reduction of energy cost compared with many conventional separation techniques. Unfortunately, the separation performance of current membranes does not meet the practical CO2/N2 [nitrogen] separation requirements. And due to the huge volume of industrial flue gas, membranes with exceptionally high permeability are needed for practical reasons.

Currently, the separation mechanism of most polymeric membranes is based on size-sieving. However, this method is not sufficient for CO2/N2 separations due to the …


Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha Dec 2017

Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha

Doctoral Dissertations

The narrow hydrophobic interior of a carbon nanotube (CNT) poses a barrier to the transport of water and ions, and yet, unexpectedly, numerous experimental and simulation studies have confirmed fast water transport rates comparable to those seen in biological aquaporin channels. These outstanding features of high water permeability and high solute rejection of even dissolved ions that would typically require a lot of energy for separation in commercial processes makes carbon nanotubes an exciting candidate for desalination membranes. Extending ion exclusion beyond simple mechanical sieving by the inclusion of electrostatics via added functionality to the nanotube bears promise to not …


First-Principles Study Of Point Defect Behavior At Interfaces And In-Plane Strain Fields, Jianqi Xi Aug 2017

First-Principles Study Of Point Defect Behavior At Interfaces And In-Plane Strain Fields, Jianqi Xi

Doctoral Dissertations

Interfaces in solid materials are the so-called boundaries, separating crystals with the same structure and chemistry but different orientations, e.g. grain boundaries (GBs), different stacking sequences, e.g. stacking faults (SFs), or crystals with different structures and/or chemistries as well as orientations, e.g. the interface between substrate and thin film. In this study, first-principles calculations are used to investigate the defect behavior at different interfaces and in-plane strain fields, such as stacking fault (SF) in silicon carbide (SiC), in-plane strain field near interfaces in potassium tantalate (KTaO3), and grain boundary in ceria (CeO2).

Results show that the …


Effect Of Crosslinking On Carbon Nanotube Materials Through Chemical Treatment And Irradiation, Xinyi Lu May 2017

Effect Of Crosslinking On Carbon Nanotube Materials Through Chemical Treatment And Irradiation, Xinyi Lu

Doctoral Dissertations

Carbon nanotubes (CNTs) exhibit a variety of exceptional properties, especially their ultrahigh tensile strength on the order of 100GPa show promise for constituting the next-generation carbon fiber. However, challenges remain to translate these properties into useful technology, primarily due to the sliding of the tubes past one another under tensile loading. The work presented in this dissertation is focused on enhancing the interaction between the CNTs and their bundles in a macro-assembly, in order to improve the tensile properties of the material.

Applying inter-tube crosslinks has been predicted to significantly enhance the stress transfer between the CNT components. We developed …


All Acrylic Based Thermoplastic Elastomers: Design And Synthesis For Improved Mechanical Performance, Wei Lu May 2017

All Acrylic Based Thermoplastic Elastomers: Design And Synthesis For Improved Mechanical Performance, Wei Lu

Doctoral Dissertations

Thermoplastic elastomers (TPEs) have been widely studied because of their recyclability, good processability, low production cost and distinct performance. Compared to the widely-used styrenic TPEs, acrylate based TPEs have potential advantages including exceptional chemical, heat, oxygen and UV resistance, optical transparence, and oil resistance. However, their high entanglement molecular weight lead to “disappointing” mechanical performance as compared to styrenic TPEs. The work described in this dissertation is aimed at employing various approaches to develop the all acrylic based thermoplastic elastomers with improved mechanical performance.

The first part of this work focuses on the introduction of acrylic polymers with high glass …


Surface Energy In Bond-Counting Models On Bravais And Non-Bravais Lattices, Tim Ryan Krumwiede May 2017

Surface Energy In Bond-Counting Models On Bravais And Non-Bravais Lattices, Tim Ryan Krumwiede

Doctoral Dissertations

Continuum models in computational material science require the choice of a surface energy function, based on properties of the material of interest. This work shows how to use atomistic bond-counting models and crystal geometry to inform this choice. We will examine some of the difficulties that arise in the comparison between these models due to differing types of truncation. New crystal geometry methods are required when considering materials with non-Bravais lattice structure, resulting in a multi-valued surface energy. These methods will then be presented in the context of the two-dimensional material graphene in a way that correctly predicts its equilibrium …


Characterizing Local Order And Physical Properties Of Rare Earth Complex Oxides, Thomas Jacob Shamblin Aug 2016

Characterizing Local Order And Physical Properties Of Rare Earth Complex Oxides, Thomas Jacob Shamblin

Doctoral Dissertations

With more than 500 compositions, materials possessing the pyrochlore structure have a myriad of technological applications and physical phenomena. Three of the most noteworthy properties are the structure’s ability to resist amorphization making it a possible host matrix for spent nuclear fuel, its exotic magnetic properties arising from geometric frustration, and fast ionic conductivity for solid-oxide fuel cell applications. This work focuses on these three aspects of the pyrochlore’s many potential uses. Structural characterization revealed that pyrochlore-type oxides have a tendency to disorder from a high symmetry cubic structure to a lower symmetry orthorhombic arrangement in response to a variety …


Lignin-Based Li-Ion Anode Materials Synthesized From Low-Cost Renewable Resources, Nicholas William Mcnutt Aug 2016

Lignin-Based Li-Ion Anode Materials Synthesized From Low-Cost Renewable Resources, Nicholas William Mcnutt

Doctoral Dissertations

In today’s world, the demand for novel methods of energy storage is increasing rapidly, particularly with the rise of portable electronic devices, electric vehicles, and the personal consumption and storage of solar energy. While other technologies have arguably improved at a rate that is exponential in accordance with Moore’s law, battery technology has lagged behind largely due to the difficulty in devising new electric storage systems that are simultaneously high performing, inexpensive, and safe.

In order to tackle these challenges, novel Li-ion battery anodes have been developed at Oak Ridge National Laboratory that are made from lignin, a low-cost, renewable …


Interaction Between Charge-Transfer States Studied By Magnetic Field Effects, Mingxing Li Aug 2016

Interaction Between Charge-Transfer States Studied By Magnetic Field Effects, Mingxing Li

Doctoral Dissertations

Organic semiconducting materials, consisting mostly of carbon and hydrogen atoms, provide remarkable promise for electronic applications due to their easy processing, chemical tenability, low costs and environmental-friendly characteristics. For realizing electronic applications such as light emitting diodes and photovoltaic cells, charge-transfer states act as an important intermediate state for recombination and dissociation. Interestingly, magnetic field effects on semiconducting materials have been realized based on the suppression of spin mixing in the charge-transfer states. Although lots of studies have been carried out on investigating the properties of charge-transfer states, little has been done to consider the interaction between them. This thesis …


Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi May 2016

Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi

Doctoral Dissertations

Metal particles of the dimensions of the order of 1 to 100's of nanometers show unique properties that are not clearly evident in their bulk state. These nanoparticles are highly reactive and sensitive to the changes in the vicinity of the particle surface and hence find applications in the field of sensing of chemical and biological agents, catalysis, energy harvesting, data storage and many more. By synthesizing bimetallic nanoparticles, a single nanoparticle can show multifunctional characteristics. The focus of this thesis is to detail the synthesis and understand the properties of bimetallic nanomaterial systems that show interesting optical, chemical, and …


Pulsed-Laser Induced Dewetting Of Metallic Nanostructures, Christopher Aidan Hartnett May 2016

Pulsed-Laser Induced Dewetting Of Metallic Nanostructures, Christopher Aidan Hartnett

Doctoral Dissertations

This dissertation explores the fluid dynamics of nano and microscale liquid metal filaments, with an emphasis on experimentally investigating the influences and causes of filament breakup and metallic nanostructure formation. Understanding and manipulating the liquid state properties of materials, especially metals, have the potential to advance the development of future technology, particularly nanoscale technology. The combination of top-down nanofabrication techniques with bottom-up, intrinsic self-assembly mechanisms are a powerful fusion, because it permits new and unusual nanostructures to be created, whilst revealing interesting nanoscale physics.

In fluid dynamics, wetting and dewetting is the spontaneous natural process that occurs when a liquid …


Magnetron Sputtering And Corrosion Of Ti-Al-C And Cr-Al-C Coatings For Zr-Alloy Nuclear Fuel Cladding, Devin Alan Roberts May 2016

Magnetron Sputtering And Corrosion Of Ti-Al-C And Cr-Al-C Coatings For Zr-Alloy Nuclear Fuel Cladding, Devin Alan Roberts

Masters Theses

The disaster at the Fukushima Daiichi Nuclear Power Plant in March 2011 bought renewed focus to the issue of corrosion in nuclear fuel cladding applications. This thesis reports on the background behind these issues, the investigation strategy, and the analysis of experiments focused on mitigating oxidation of Zr-alloy fuel cladding. This thesis seeks to develop magnetron sputtered Ti-Al-C and Cr-Al-C coatings for Zr-alloy substrates and characterize the as-deposited and corroded samples.

Ti-Al-C and Cr-Al-C coatings were deposited onto ZIRLO, Si, and Al2O3 [Aluminum Oxide] substrates under various sputtering conditions. A combinatorial sputtering method was employed to refine …


Interface And Morphology Engineering In Solution-Processed Electronic And Optoelectronic Devices, Sanjib Das Dec 2015

Interface And Morphology Engineering In Solution-Processed Electronic And Optoelectronic Devices, Sanjib Das

Doctoral Dissertations

The first part of this dissertation focuses on interface and morphology engineering in polymer- and small molecule-based organic solar cells. High-performance devices were fabricated, and the device performance was correlated with nanoscale structures using various electrical, spectroscopic and microscopic characterization techniques, providing guidelines for high-efficiency cell design.

The second part focuses on perovskite solar cells (PSCs), an emerging photovoltaic technology with skyrocketing rise in power conversion efficiency (PCE) and currently showing comparable PCEs with those of existing thin film photovoltaic technologies such as CIGS and CdTe. Fabrication of large-area PSCs without compromising reproducibility and device PCE requires formation of dense, …


Solution And Surface Properties Of Architecturally- And Compositionally-Complex Block Copolymers And Their Binary Mixtures, Jesse Lawrence Davis Dec 2015

Solution And Surface Properties Of Architecturally- And Compositionally-Complex Block Copolymers And Their Binary Mixtures, Jesse Lawrence Davis

Doctoral Dissertations

The spontaneous generation of complex structures from polymeric building blocks provides a simple yet effective route to create useful soft matter structures having potential application in a variety of nanotechnologies. The topology, chemical structure, block composition, and sequence of the constituent building blocks of polymers are tunable through synthetic chemistry. This tunability offers attractive opportunities to generate complex, yet well-defined structures with control over the geometry, packing symmetry, and microdomain structure. This thesis work involves the study of the self-assembly behaviors of architecturally complex amphiphilic block copolymers (ABCs). ABCs are composed of two or more chemically distinct blocks that are …