Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 61 - 65 of 65

Full-Text Articles in Physical Sciences and Mathematics

Electrochemical Syntheses Of Graphene And Its Composites, Bo Zhao, Li Jiang, Ming-Hui Yuen, Xian-Zhu Fu, Rong Sun, Ching-Ping Wong Feb 2016

Electrochemical Syntheses Of Graphene And Its Composites, Bo Zhao, Li Jiang, Ming-Hui Yuen, Xian-Zhu Fu, Rong Sun, Ching-Ping Wong

Journal of Electrochemistry

Graphene is a kind of ideal two-dimensional flat carbon nanomaterials which have unique chemical and physical properties. The attractive potential applications must be based on the high quality mass production of graphene. However, it remains a huge challenge.An electrochemical approach is a fast, environmental friendly and easy-operating method. single- or multi-layered graphene flakes can easily be produced in short periods of time. In this review, the structure, properties and preparation methods of graphene are first introduced. Accordingly, the electrochemical approaches used for the productions of graphene flakes,graphene/inorganic nanocomposites, graphene/polymer composites and graphene analogues are highlighted. Finally, challenges and opportunities are …


Adsorption Behavior Of Rhodamine 6g On Silver Surfaces Studied By Electrochemical Surface-Enhanced Raman Spectroscopy, Chan-Juan Chen, Cheng Zong, Guo-Kun Liu, Bin Ren Feb 2016

Adsorption Behavior Of Rhodamine 6g On Silver Surfaces Studied By Electrochemical Surface-Enhanced Raman Spectroscopy, Chan-Juan Chen, Cheng Zong, Guo-Kun Liu, Bin Ren

Journal of Electrochemistry

Rhodamine 6G (R6G) is one of the most common probe molecules employed in single molecule surface-enhanced Raman spectroscopy (SM-SERS). The study in adsorption behavior of R6G will help understand the interactions between R6G and surface. In this paper, we used electrochemical surface-enhanced Raman spectroscopy (SERS) to study the potential-dependent adsorption behavior of R6G on silver electrodes. Our results show that when the potential moved negatively, the orientation of R6G on silver surface changed from vertical to inclined adsorption. This result indicates that the abnormal SM-SERS spectra of R6G observed in the former SM-SERS studies from other research groups are due …


Electrochemical H2O2Sensor Based On The Co-Immobilization Of Phosphmolybdic Acid And Graphene On Pedot Film Electrode With Nafion, Hao-Xian Zhou, Jun-Ming Zhang, Zhi-Yu Qu, Pan-Yu Zhang, You-Jun Fan Feb 2016

Electrochemical H2O2Sensor Based On The Co-Immobilization Of Phosphmolybdic Acid And Graphene On Pedot Film Electrode With Nafion, Hao-Xian Zhou, Jun-Ming Zhang, Zhi-Yu Qu, Pan-Yu Zhang, You-Jun Fan

Journal of Electrochemistry

With a glassy carbon electrode (GCE) as the substrate, the poly(3,4-ethylenedioxythiophene) (PEDOT) film electrode was prepared through the electrochemical polymerization method, then a novel non-enzymatic electrochemical H2O2 sensor was fabricated by co-immobilizing phosphomolybdic acid and graphene with Nafion on the PEDOT/GCE electrode. The modified electrodes were characterized by scanning electron microscopy (SEM), while the responsive properties of the sensor to H2O2 were investigated by cyclic voltammetry and chronoamperometry. The results demonstrated that, under the optimized conditions, the sensor exhibited good electrocatalytic performance for H2O2 reduction. The current response of the sensor …


Electricity Generation Of Microbial Fuel Cell Using Stainless Steel Mesh As Cathode, Hong-Yan Dai, Hui-Min Yang, Xian Liu, Xuan Jian, Xiu-Li Song, Zhen-Hai Liang Feb 2016

Electricity Generation Of Microbial Fuel Cell Using Stainless Steel Mesh As Cathode, Hong-Yan Dai, Hui-Min Yang, Xian Liu, Xuan Jian, Xiu-Li Song, Zhen-Hai Liang

Journal of Electrochemistry

In the present work, a dual-chamber microbial fuel cell (MFC) was constructed with aeration tank sludge as an inoculum, carbon felt as an anode and stainless steel mesh without any modification as a cathode. The influence of the cathode size was investigated in terms of voltage output, power generation and electrochemical impedance. The long-term durability of the stainless steel mesh cathode was also evaluated. Results showed that the stainless steel mesh exhibited satisfactory long-term durability as MFC cathode. When the stainless steel mesh size was 2 × 2 cm2, the maximum output voltage, power density, the internal resistance …


Fabrication Of Riboflavin Electrochemical Sensor Based On Au Nanoparticles/Polydopamine/Carbon Nanotubes Modified Glassy Carbon Electrode, Hua-Ping Peng, Mei-Ling Yu, Xin Liu, Pan Liu, Wei Chen, Ai-Lin Liu, Xin-Hua Lin Feb 2016

Fabrication Of Riboflavin Electrochemical Sensor Based On Au Nanoparticles/Polydopamine/Carbon Nanotubes Modified Glassy Carbon Electrode, Hua-Ping Peng, Mei-Ling Yu, Xin Liu, Pan Liu, Wei Chen, Ai-Lin Liu, Xin-Hua Lin

Journal of Electrochemistry

A novel electrochemical platform for the high sensitivity detection of riboflavin was constructed by Au nanoparticles/polydopamine/carbon nanotubes (Au-PDA-MWCNTs) nanocomposite modified glassy carbon electrode. The Au-PDA-MWCNTs nanocomposite was synthesized by in situ reduction method. The characteristics of the as-prepared Au-PDA-MWCNTs nanocomposite modified electrodes were investigated by using UV-Vis spectroscopy, scanning electron microscopy (SEM) and electrochemical methods. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to study the electrochemical behavior of riboflavin (RF) at Au-PDA-MWCNTs nanocomposite modified electrodes. The results demonstrated that the present electrochemical sensor exhibited a wide linear range from 5×10-9 mol•L-1to 1×10-5 mol•L …