Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 57 of 57

Full-Text Articles in Physical Sciences and Mathematics

Cytotoxic And Antimicrobial Effects Of Silver-Containing Surfaces, Sarah Goderecci Mar 2017

Cytotoxic And Antimicrobial Effects Of Silver-Containing Surfaces, Sarah Goderecci

Theses and Dissertations

This study examines applications of sputtered silver coatings as alternatives to traditional antibiotic treatments. Given the increase in reports of antibiotic-resistant bacteria, new treatments and coatings for in-dwelling medical devices such as catheters and orthopedic implants are necessary. Silver oxide films were deposited onto Ti surfaces to examine the efficacy of such coatings against a variety of bacterial species both in vitro and in vivo. Bacterial growth studies showed that coatings exhibited antimicrobial activity against a range of bacterial species acting either in a bacteriostatic or bactericidal mechanism, depending on the target. Limited toxicity to in vitro mammalian cells was …


Preparation And Evaluation Techniques Of Porous Materials And Mixed Matrix Membranes For Targeted Co2 Separation Applications, Tsemre Tessema Jan 2017

Preparation And Evaluation Techniques Of Porous Materials And Mixed Matrix Membranes For Targeted Co2 Separation Applications, Tsemre Tessema

Theses and Dissertations

The use of porous sorbents for physisorptive capture of CO2 from gas mixtures has been deemed attractive due to the low energy penalty associated with recycling of such materials. Porous organic polymers (POPs) have emerged as promising candidates with potential in the treatment of pre- and post- fuel combustion processes to separate CO2 from gas mixtures. Concurrently, significant advances have been made in establishing calculation methods that evaluate the practicality of porous sorbents for targeted gas separation applications. However, these methods rely on single gas adsorption isotherms without accounting for the dynamic gas mixtures encountered in real-life applications. …


Investigations Into Structure And Properties Of Atomically-Precise Transition Metal-Chalcogenide Clusters Of Crte And Ligated Cr6te8(Pet3)6, Anthony F. Pedicini Jan 2017

Investigations Into Structure And Properties Of Atomically-Precise Transition Metal-Chalcogenide Clusters Of Crte And Ligated Cr6te8(Pet3)6, Anthony F. Pedicini

Theses and Dissertations

The complete understanding of a clusters electronic structure, the primary mechanisms for its properties and stabilization is necessary in order to functionalize them for use as building blocks within novel materials. First principle theoretical studies have been carried out upon the electronic properties of CrxTey (x = 1 – 6, y = 0 – 8, x + y ≤ 14), as well as for the larger triethylphosphine (PEt3) ligated cluster system of Cr6Te8(PEt3)6. Together, we aim to use the information garnered from the smaller clusters to address …


Synthesis And Characterization Of Metallic Nanoparticles For Catalytic Applications, Sarah Smith Jan 2017

Synthesis And Characterization Of Metallic Nanoparticles For Catalytic Applications, Sarah Smith

Theses and Dissertations

In recent years, research has focused on reducing the cost of catalysts in a variety of ways including using less expensive materials, improving the synthetic method, and increasing the catalytic activity, recovery, and recyclability. Typically with nanoparticles, the size, shape, composition, and surface coating have an effect on catalytic activity.1-2 In this work, we focused on reducing the cost of precious metal based catalysts by altering the synthetic methods.

One way to lower the cost of synthesizing precious metal nanoparticles is by debasing the precious metal with a second cheaper more abundant metal. CuPd nanoparticles were synthesized in oleylamine …


Effect Of Charged Species On The Gradient Properties, Kayesh Ashraf Jan 2017

Effect Of Charged Species On The Gradient Properties, Kayesh Ashraf

Theses and Dissertations

Surface chemical gradients are materials that exhibit continuous, gradually varying chemical or physical properties along and across the length of a substrate. As a result, each point on the gradient surface can represent an individual sample. They are broadly classified as chemical and physical gradients depending upon the properties that the gradient exhibits. A physical gradient involves a continuous variation of physical properties such as surface roughness and film porosity on the micrometer scale. Chemical gradients involve a gradual variation of chemical properties such as polarity, acidity and basicity, etc. Such gradients have found various applications in cell adhesion, nanoparticle …


Sol-Gel Chemistry: An Advanced Technique To Produce Macroscopic Nanostructures Of Metal And Semiconductor Colloids, Lamia Nahar Jan 2017

Sol-Gel Chemistry: An Advanced Technique To Produce Macroscopic Nanostructures Of Metal And Semiconductor Colloids, Lamia Nahar

Theses and Dissertations

The fascinating physical properties that arise in materials limited to dimensions of 1-100 nm have gained noteworthy interest from the scientific community. Accordingly, there has been a lot of attention paid to the synthesis of discrete nanoparticles (NPs) and they are being investigated for a range of advanced technologies. Nonetheless, efficient use of nanomaterials in device applications require them to be assembled into solid state macro-structures while retaining their unique, nanoparticulate properties. To date, most commonly investigated assembling techniques include: covalent coupling of NPs surface groups, control evaporation of the solvent to produce ordered supercrystals or non-ordered glassy films, and …


Exploring The Effects Of Different Classroom Environments On The Learning Process. Synthesis Of Thiazole-Linked Porous Organic Polymers For Co2 Separation And Nitro-Aromatics Sensing., Davide D'Urbino Jan 2017

Exploring The Effects Of Different Classroom Environments On The Learning Process. Synthesis Of Thiazole-Linked Porous Organic Polymers For Co2 Separation And Nitro-Aromatics Sensing., Davide D'Urbino

Theses and Dissertations

When attempting to study the learning process of undergraduate chemistry student, the classroom and any interaction that take place within it constitute the social context of interest. By studying how different approaches can foster different classroom environments, it is possible to approach course design from an informed and scientifically sound perspective. Thus, it becomes necessary to identify and quantify the factors that have a positive or negative effect on the classroom environment. Social comparison concerns, comfort levels and self-efficacy have been shown to be social factors that affect each other as well as the learning process and have therefore been …


Synthesis, Characterization, And Enhanced Magnetic Properties Of Iron Carbide Nanomaterials, Brent M. Williams Jan 2017

Synthesis, Characterization, And Enhanced Magnetic Properties Of Iron Carbide Nanomaterials, Brent M. Williams

Theses and Dissertations

Permanent magnets are classified as hard magnetic materials with the main purpose of generating flux for applications such as electric motors, turbines, and hard drives. High coercivity, magnetic remanence, and saturation values with high stability are some of the requirements for permanent magnets. Rare-earth magnets including neodymium and samarium based magnets are known to have superior magnetic properties due to their high magnetocrystalline anisotropy. However, due to the price of rare-earth materials development of alternate permanent magnets composed of inexpensive materials is an ongoing process. Previously cobalt carbide (CoxC) have shown promise as a potential rare-earth free magnet …


Efficient Integration Of Plasmonic And Excitonic Properties Of Metal And Semiconductor Nanostructures Via Sol-Gel Assembly, Dilhara Liyanage Jan 2017

Efficient Integration Of Plasmonic And Excitonic Properties Of Metal And Semiconductor Nanostructures Via Sol-Gel Assembly, Dilhara Liyanage

Theses and Dissertations

Research in nanoscience has gained noteworthy interest over the past three decades. As novel chemical and physical properties that are vastly different from extended solids are realized in nanosized materials, nanotechnology has become the center of attention for material in research community. Much to our amazement, investigations in the past two decades revealed that the nanocrystalline semiconductors are “THE PRIME CANDIDATES” to meet the growing energy demand, sensor development, cellular imaging and a number of other optoelectronic applications. Nonetheless, synthesis of nanostructures with control over physical parameters is not sufficient, yet assembling them into functional nanoarchitectures with unique and tunable …


The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves Jan 2016

The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves

Theses and Dissertations

Ge1-xSnx alloys are among a small class of benign semiconductors with composition tunable bandgaps in the near-infrared spectrum. As the amount of Sn is increased the band energy decreases and a transition from indirect to direct band structure occurs. Hence, they are prime candidates for fabrication of Si-compatible electronic and photonic devices, field effect transistors, and novel charge storage device applications. Success has been achieved with the growth of Ge1-xSnx thin film alloys with Sn compositions up to 34%. However, the synthesis of nanocrystalline alloys has proven difficult due to larger discrepancies (~14%) in …


Non-Conventional Approaches To Syntheses Of Ferromagnetic Nanomaterials, Dustin M. Clifford Jan 2016

Non-Conventional Approaches To Syntheses Of Ferromagnetic Nanomaterials, Dustin M. Clifford

Theses and Dissertations

The work of this dissertation is centered on two non-conventional synthetic approaches to ferromagnetic nanomaterials: high-throughput experimentation (HTE) (polyol process) and continuous flow (CF) synthesis (aqueous reduction and the polyol process). HTE was performed to investigate phase control between FexCo1-x and Co3-xFexOy. Exploration of synthesis limitations based on magnetic properties was achieved by reproducing Ms=210 emu/g. Morphological control of FexCo1-x alloy was achieved by formation of linear chains using an Hext. The final study of the FexCo1-x chains used DoE to …


Laser Vaporization Controlled Condensation And Laser Irradiation In Solution For The Synthesis Of Supported Nanoparticle Catalysts, Vitaly Kisurin Mr. Jan 2016

Laser Vaporization Controlled Condensation And Laser Irradiation In Solution For The Synthesis Of Supported Nanoparticle Catalysts, Vitaly Kisurin Mr.

Theses and Dissertations

Solid catalyst supports of SiOx-RGO (Reduced Graphene Oxide) and UiO-67 (Universitet i Oslo) have been successfully synthesized and were loaded with palladium nanoparticles to test for a series of heterogeneous reactions. The SiOx/RGO catalysts were synthesized through laser ablation of silicon and graphite oxide micron powder and UiO-67 metal-organic framework (MOF) was synthesized through mixing of precursors with DMF/HCl solution and washing the resultant powder from impurities. The SiOx/RGO supports were later impregnated with palladium precursors which were then subject to Microwave Irradiation (MWI). The UiO-67 framework was impregnated with palladium precursors and was irradiated with pulsed Nd:YAG 532 nm …


Systematic Postsynthetic Modification Of Nanoporous Organic Frameworks And Their Performance Evaluation For Selective Co2 Capture, Timur Islamoglu Jan 2016

Systematic Postsynthetic Modification Of Nanoporous Organic Frameworks And Their Performance Evaluation For Selective Co2 Capture, Timur Islamoglu

Theses and Dissertations

Porous organic polymers (POPs) with high physicochemical stability have attracted significant attention from the scientific community as promising platforms for small gas separation adsorbents. Although POPs have amorphous morphology in general, with the help of organic chemistry toolbox, ultrahigh surface area materials can be synthesized. In particular, nitrogen-rich POPs have been studied intensively due to their enhanced framework-CO2 interactions. Postsynthetic modification (PSM) of POPs has been instrumental for incorporating different functional groups into the pores of POPs which would increase the CO2 capture properties. We have shown that functionalizing the surface of POPs with nitro and amine groups …


Sol-Gel Assembly Of Metal Nanostructures Into Metallic Gel Frameworks And Their Applications, Xiaonan Gao Jan 2016

Sol-Gel Assembly Of Metal Nanostructures Into Metallic Gel Frameworks And Their Applications, Xiaonan Gao

Theses and Dissertations

The advent of nanoscience and nanotechnology has sparked many research forefronts in the creation of materials with control over size, shape, composition, and surface properties.1,2 However, for most of the applications, nanoscale materials need to be assembled into functional nanostructures that exhibit useful and controllable physical properties. Therefore, numerous efforts on the assembly of nanoparticles (NPs) using organic ligands, polymers and polyelectrolytes have been reported.3,4 However, the interactions between NPs are mediated by intervening ligands, which are detrimental to charge transport and limit the thermal stability. Hence, developing a new method to produce solid …


Fabricating Superhydrophobic And Superoleophobic Surfaces With Multiscale Roughness Using Airbrush And Electrospray, Karam N. Almilaji Jan 2016

Fabricating Superhydrophobic And Superoleophobic Surfaces With Multiscale Roughness Using Airbrush And Electrospray, Karam N. Almilaji

Theses and Dissertations

Examples of superhydrophobic surfaces found in nature such as self-cleaning property of lotus leaf and walking on water ability of water strider have led to an extensive investigation in this area over the past few decades. When a water droplet rests on a textured surface, it may either form a liquid-solid-vapor composite interface by which the liquid droplet partially sits on air pockets or it may wet the surface in which the water replaces the trapped air depending on the surface roughness and the surface chemistry. Super water repellent surfaces have numerous applications in our daily life such as drag …


Continuous Stationary Phase Gradients For Planar And Column Chromatography, Veeren Dewoolkar Jan 2016

Continuous Stationary Phase Gradients For Planar And Column Chromatography, Veeren Dewoolkar

Theses and Dissertations

Surfaces that exhibit a gradual change in their chemical and/or physical properties are termed as surface gradients. Based on the changes in properties they are classified either as physical or chemical gradients. Chemical gradients show variations in properties like polarity, charge, functionality concentration and have found potential applications in fields of biology, physics, biosensing, catalysis and separation science. In this dissertation, surface gradients have been prepared using controlled rate infusion (CRI).

CRI is a simple method in which a surface gradient is formed by carrying out the infusion of organoalkoxysilane in a time-dependent fashion using a set infusion rate. Depending …


Fabrication Of Multifunctional Nanostructured Porous Materials, Ahmed A. Farghaly Jan 2016

Fabrication Of Multifunctional Nanostructured Porous Materials, Ahmed A. Farghaly

Theses and Dissertations

Nanostructured porous materials generally, and nanoporous noble metals specifically, have received considerable attention due to their superior chemical and physical properties over nanoparticles and bulk counterparts. This dissertation work aims to develop well-established strategies for the preparation of multifunctional nanostructured porous materials based on the combination of inorganic-chemistry, organic-chemistry and electrochemistry. The preparation strategies involved one or more of the following processes: sol-gel synthesis, co-electrodeposition, metal ions reduction, electropolymerization and dealloying or chemical etching. The study did not stop at the preparation limits but extended to investigate the reaction mechanism behind the formation of these multifunctional nanoporous structures in order …


Diazaborole Linked Porous Polymers: Design, Synthesis, And Application To Gas Storage And Separation, Zafer Kahveci Jan 2015

Diazaborole Linked Porous Polymers: Design, Synthesis, And Application To Gas Storage And Separation, Zafer Kahveci

Theses and Dissertations

The synthesis of highly porous organic polymers with predefined porosity has attracted considerable attention due to their potential in a wide range of applications. Porous organic polymers (POPs) offer novel properties such as permanent porosity, adjustable chemical nature, and noteworthy thermal and chemical stability. These remarkable properties of the POPs make them promising candidates for use in gas separation and storage. The emission of carbon dioxide (CO2) from fossil fuel combustion is a major cause of global warming. Finding an efficient separation and/or storage material is essential for creating a cleaner environment. Therefore, the importance of the POPs …


Colloidal Synthesis And Optical Characterizations Of Semiconductor Nanocrystals From Nontoxic Elements, Minh Q. Ho Jan 2015

Colloidal Synthesis And Optical Characterizations Of Semiconductor Nanocrystals From Nontoxic Elements, Minh Q. Ho

Theses and Dissertations

To date, the search efforts have shifted from the toxic II-VI, III-V and IV-VI semiconductors to more environmentally friendly materials. Among Group II-V semiconductors, Zn3P2 has shown to be a more benign option, similar to Group IV (Ge, Si) materials, for future applications in photovoltaics and optoelectronics. This work is dedicated to the development of wet-chemical synthetic routes of (1) Zn3P2 and (2) Group IV (Ge, Si, Si1-xGex) nanocrystals with precise control over composition, crystal structure, size and dispersity by adjusting different reaction parameters such as temperature, time and solvent …


Synthesis, Surface Functionalization, And Biological Testing Of Iron Oxide Nanoparticles For Development As A Cancer Therapeutic, Stanley E. Gilliland Iii Jan 2015

Synthesis, Surface Functionalization, And Biological Testing Of Iron Oxide Nanoparticles For Development As A Cancer Therapeutic, Stanley E. Gilliland Iii

Theses and Dissertations

Iron oxide nanoparticles are highly researched for their use in biomedical applications such as drug delivery, diagnosis, and therapy. The inherent biodegradable and biocompatible nanoparticle properties make them highly advantageous in nanomedicine. The magnetic properties of iron oxide nanoparticles make them promising candidates for magnetic fluid hyperthermia applications. Designing an efficient iron oxide nanoparticle for hyperthermia requires synthetic, surface functionalization, stability, and biological investigations. This research focused on the following three areas: optimizing synthesis conditions for maximum radiofrequency induced magnetic hyperthermia, designing a simple and modifiable surface functionalization method for specific or broad biological stability, and in vitro and in …


Heteroatom-Doped Nanoporous Carbons: Synthesis, Characterization And Application To Gas Storage And Separation, Babak Ashourirad Jan 2015

Heteroatom-Doped Nanoporous Carbons: Synthesis, Characterization And Application To Gas Storage And Separation, Babak Ashourirad

Theses and Dissertations

Activated carbons as emerging classes of porous materials have gained tremendous attention because of their versatile applications such as gas storage/separations sorbents, oxygen reduction reaction (ORR) catalysts and supercapacitor electrodes. This diversity originates from fascinating features such as low-cost, lightweight, thermal, chemical and physical stability as well as adjustable textural properties. More interestingly, sole heteroatom or combinations of various elements can be doped into their framework to modify the surface chemistry. Among all dopants, nitrogen as the most frequently used element, induces basicity and charge delocalization into the carbon network and enhances selective adsorption of CO2. Transformation of …


Modified Seed Growth Of Iron Oxide Nanoparticles In Benzyl Alcohol: Magnetic Nanoparticles For Radio Frequency Hyperthermia Treatment Of Cancer, Stanley E. Gilliland Iii Jan 2014

Modified Seed Growth Of Iron Oxide Nanoparticles In Benzyl Alcohol: Magnetic Nanoparticles For Radio Frequency Hyperthermia Treatment Of Cancer, Stanley E. Gilliland Iii

Theses and Dissertations

Iron oxide nanoparticles have received sustained interest for biomedical applications as synthetic approaches are continually developed for precise control of nanoparticle properties. This thesis presents an investigation of parameters in the benzyl alcohol synthesis of iron oxide nanoparticles. A modified seed growth method was designed for obtaining optimal nanoparticle properties for magnetic fluid hyperthermia. With a one or two addition process, iron oxide nanoparticles were produced with crystallite sizes ranging from 5-20 nm using only benzyl alcohol and iron precursor. The effects of reaction environment, temperature, concentration, and modified seed growth parameters were investigated to obtain precise control over properties …


Fabrication And Characterization Of High Surface Area Gold Electrodes, Madhura S. Damle Jan 2014

Fabrication And Characterization Of High Surface Area Gold Electrodes, Madhura S. Damle

Theses and Dissertations

High surface area gold electrodes are very good substrates for biosensors, catalysis and drug delivery. Their performance is characterized by good sensitivity, low detection limit and high signal. As a result, extensive research is being carried out in this field using different approaches of fabrication to generate high surface area porous electrodes of different morphology, pore size and structure. The morphology of the electrodes can be changed based on whether the approach involves a template or not, types of metal deposition, method and time of dealloying etc. The deposition of metal can be carried out using various approaches such as …


Investigation Of Electrical And Optical Properties Of Bulk Iii-V Ternary Semiconductors, Travis C. Gomez Mar 2009

Investigation Of Electrical And Optical Properties Of Bulk Iii-V Ternary Semiconductors, Travis C. Gomez

Theses and Dissertations

Bulk grown III-V ternary semiconductors of In0.08Ga0.92Sb and In0.15Ga0.85As were investigated through Hall-effect and photoluminescence measurements to determine carrier concentration, mobility, sheet resistivity, and luminescence spectrum. In the past, epitaxial layers of ternary compounds have been grown on binary compound substrates, and thus very limited lattice matched ternary alloys were available. Recently, bulk grown ternary substrates have been developed, and it has presented a renewed interest in using these substrates to grow high quality ternary compounds for use in many next generation optoelectronic devices. The results of photoluminescence (PL) study for the …


Advanced Radiometry For High Discrimination Explosive Fireball Discrimination, Steven E. Slagle Mar 2009

Advanced Radiometry For High Discrimination Explosive Fireball Discrimination, Steven E. Slagle

Theses and Dissertations

The high explosive fireball phenomenological model for the mid wave infrared spectrum, developed by AFIT, performs classification from spectral signatures was modified to use radiometric intensities. Five bands were sequentially fit to derive the five physical fit parameters describing the fireball's temperature, size, soot absorption coefficient within 16% and emissions from the H2O and CO2 concentrations within 333% of the spectral model. This was improved by changing the model's band sizes, center, and fitting methods where all five fit parameters were matched to within 17% of spectral model. This demonstrated that a combination of radiometric intensities could …


Nondestructive Evaluation Of Aircraft Composites Using Terahertz Time Domain Spectroscopy, Christopher D. Stoik Dec 2008

Nondestructive Evaluation Of Aircraft Composites Using Terahertz Time Domain Spectroscopy, Christopher D. Stoik

Theses and Dissertations

Terahertz (THz) time domain spectroscopy (TDS) was assessed as a nondestructive evaluation technique for aircraft composites. Material properties of glass fiber composite were measured using both transmission and reflection configuration. The interaction of THz with a glass fiber composite was then analyzed, including the effects of scattering, absorption, and the index of refraction, as well as effective medium approximations. THz TDS, in both transmission and reflection configuration, was used to study composite damage, including voids, delaminations, mechanical damage, and heat damage. Measurement of the material properties on samples with localized heat damage showed that burning did not change the refractive …


Investigation Of The Platinum-Rich Portion Of The Platinum-Tantalum Phase Diagram, Bob Dean Browning Aug 1961

Investigation Of The Platinum-Rich Portion Of The Platinum-Tantalum Phase Diagram, Bob Dean Browning

Theses and Dissertations

The Pt-Ta binary system was investigated at two isotherms;1000°C and 1500°C, and at eleven alloy compositions in the range of 50 to 100 atomic percent platinum. The alloys were examined by x-ray diffraction and metallography. Three intermetallic compounds, Pt2Ta, Pt3Ta, and Pt4Ta were found to exist in this composition range. The Pt4Ta intermetallic appeared only at the 1500°C isotherm. Platinum dissolved tantalum substitutionally to 90 atomic percent at 1500 °C and to approximately 80 atomic percent at 1000 °C.