Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physical Sciences and Mathematics

A Predictive Flood Model For Urban Karst Groundwater Systems, Trayson Lawler Aug 2023

A Predictive Flood Model For Urban Karst Groundwater Systems, Trayson Lawler

Masters Theses & Specialist Projects

Urban karst environments are often plagued by groundwater flooding, which occurs when water rises from the subsurface to the surface through the underlying caves and other karst features. The heterogeneity and interconnectedness of karst systems often makes them very unpredictable, especially during intense storm events; urbanization exacerbates the problem with the addition of many impervious surfaces. Residents in such areas are frequently disturbed and financially burdened by the effects of karst groundwater flooding. The Federal Emergency Management Agency (FEMA) offers limited protection to citizens living near flood-prone areas as they primarily focus on the areas near surface bodies of water. …


Predictive Modeling Of Cave Entrance Locations: Relationships Between Surface And Subsurface Morphology, William Blitch, Adia R. Sovie, Benjamin W. Tobin Jul 2023

Predictive Modeling Of Cave Entrance Locations: Relationships Between Surface And Subsurface Morphology, William Blitch, Adia R. Sovie, Benjamin W. Tobin

International Journal of Speleology

Cave entrances directly connect the surface and subsurface geomorphology in karst landscapes. Understanding the spatial distribution of these features can help identify areas on the landscape that are critical to flow in the karst groundwater system. Sinkholes and springs are major locations of inflow and outflow from the groundwater system, respectively, however not all sinkholes and springs are equally connected to the main conduit system. Predicting where on the landscape zones of high connectivity exist is a challenge because cave entrances are difficult to detect and imperfectly documented. Wildlife research has a similar issue of understanding the complexities of where …


Soil Moisture And Geomorphologic Data For Use In Dynamic And Forecastable Landslide Hazard Analyses In Eastern Kentucky, Daniel M. Francis, L. Sebastian Bryson Jan 2023

Soil Moisture And Geomorphologic Data For Use In Dynamic And Forecastable Landslide Hazard Analyses In Eastern Kentucky, Daniel M. Francis, L. Sebastian Bryson

Civil Engineering Research Data

These data are the geomorphologic and land information system-based soil moisture estimates from assimilation of NASA SMAP satellite-based observations and NOAH 3.6 Land Surface Model estimates over known landslides in Eastern Kentucky. Additionally Long Short-Term Memory Recurrent Neural Network and logistic regression machine learning codes, as well as an Application programming interface code are included. Finally, in-situ data from Eastern Kentucky is included.


Spatiotemporal Retrievals Of Soil Moisture And Geomorphologic Data For Landslide Sites In Eastern Kentucky, Lindsey Sebastian Bryson, Daniel M. Francis Jan 2023

Spatiotemporal Retrievals Of Soil Moisture And Geomorphologic Data For Landslide Sites In Eastern Kentucky, Lindsey Sebastian Bryson, Daniel M. Francis

Civil Engineering Research Data

These data are the soil texture, land information system-based soil moisture estimates from assimilation of NASA SMAP satellite-based observations and NOAH 3.6 Land Surface Model estimates, artificial neural network machine learning code, and in-situ soil moisture measurements.


Historical And Forecasted Kentucky Specific Slope Stability Analyses Using Remotely Retrieved Hydrologic And Geomorphologic Data, Daniel M. Francis Jan 2023

Historical And Forecasted Kentucky Specific Slope Stability Analyses Using Remotely Retrieved Hydrologic And Geomorphologic Data, Daniel M. Francis

Theses and Dissertations--Civil Engineering

Hazard analyses of rainfall-induced landslides have typically been observed to experience a lack of inclusion of measurements of soil moisture within a given soil layer at a site of interest. Soil moisture is a hydromechanical variable capable of both strength gains and reductions within soil systems. However, in situ monitoring of soil moisture at every site of interest is an unfeasible goal. Therefore, spatiotemporal estimates of soil moisture that are representative of in-situ conditions are required for use in subsequent landslide hazard analyses.

This study brings together various techniques for the acquisition, modeling, and forecasting of spatiotemporal retrievals of soil …


3d Hydrostratigraphic And Hydraulic Conductivity Modeling Using Supervised Machine Learning, T. A. Tilahun, Jesse T. Korus Dr. Jan 2023

3d Hydrostratigraphic And Hydraulic Conductivity Modeling Using Supervised Machine Learning, T. A. Tilahun, Jesse T. Korus Dr.

Conservation and Survey Division

No abstract provided.


Learning From Machines: Insights In Forest Transpiration Using Machine Learning Methods, Morgan Tholl Jul 2022

Learning From Machines: Insights In Forest Transpiration Using Machine Learning Methods, Morgan Tholl

Dissertations and Theses

Machine learning has been used as a tool to model transpiration for individual sites, but few models are capable of generalizing to new locations without calibration to site data. Using the global SAPFLUXNET database, 95 tree sap flow data sites were grouped using three clustering strategies: by biome, by tree functional type, and through use of a k-means unsupervised clustering algorithm. Two supervised machine learning algorithms, a random forest algorithm and a neural network algorithm, were used to build machine learning models that predicted transpiration for each cluster. The performance and feature importance in each model were analyzed and compared …


Patterns Of Dissolved Methane In Groundwater And Its Contribution To Emissions Inventories, Amanda E. Campbell Jul 2022

Patterns Of Dissolved Methane In Groundwater And Its Contribution To Emissions Inventories, Amanda E. Campbell

Dissertations - ALL

The Marcellus Shale is the largest shale gas play in the U.S. production of natural gas using high-volume hydraulic fracturing (HVHF) and production is prevalent throughout the play except in New York (NY), where it is currently banned. High concentrations of methane, the main component of natural gas, in groundwater, as well as its presence in the atmosphere, can have negative consequences. In this dissertation, three aspects of this issue are explored: 1) how and why naturally-occurring methane concentrations vary through time; 2) how elevated naturally-occurring methane concentrations in domestic water wells can be predicted from commonly observed well characteristics; …


Assessing Machine Learning Utility In Predicting Hydrologic And Nitrate Dynamics In Karst Agroecosystems, Timothy Mcgill Jan 2022

Assessing Machine Learning Utility In Predicting Hydrologic And Nitrate Dynamics In Karst Agroecosystems, Timothy Mcgill

Theses and Dissertations--Biosystems and Agricultural Engineering

Seasonal hypoxia in the Gulf of Mexico and harmful algal blooms experienced in many inland freshwater bodies is partially driven due to excessive nitrogen loading seen from agricultural watersheds. Within the Mississippi/Atchafalaya River Basin, many areas are underlain with karst features, and efforts to reduce nitrogen contributions from these areas have had varying success, due to lacking a complete understanding of nutrient dynamics in karst agricultural systems. To improve the understanding of nitrogen cycling in these systems, 35 months of high resolution in situ water quality and atmospheric data were collected and fed into a two-hidden layer extreme learning machine …


A Coastal N₂ Fixation Hotspot At The Cape Hatteras Front: Elucidating Spatial Heterogeneity In Diazotroph Activity Via Supervised Machine Learning, Corday R. Selden, P. Dreux Chappell, Sophie Clayton, Alfonso Macías-Tapia, Peter W. Bernhardt, Margaret R. Mulholland Jan 2021

A Coastal N₂ Fixation Hotspot At The Cape Hatteras Front: Elucidating Spatial Heterogeneity In Diazotroph Activity Via Supervised Machine Learning, Corday R. Selden, P. Dreux Chappell, Sophie Clayton, Alfonso Macías-Tapia, Peter W. Bernhardt, Margaret R. Mulholland

OES Faculty Publications

In the North Atlantic Ocean, dinitrogen (N2) fixation on the western continental shelf represents a significant fraction of basin‐wide nitrogen (N) inputs. However, the factors regulating coastal N2 fixation remain poorly understood, in part due to sharp physico‐chemical gradients and dynamic water mass interactions that are difficult to constrain via traditional oceanographic approaches. This study sought to characterize the spatial heterogeneity of N2 fixation on the western North Atlantic shelf, at the confluence of Mid‐ and South Atlantic Bight shelf waters and the Gulf Stream, in August 2016. Rates were quantified using the 15N2 …


Inference Of Surface Velocities From Oblique Time Lapse Photos And Terrestrial Based Lidar At The Helheim Glacier, Franklyn T. Dunbar Ii Jan 2021

Inference Of Surface Velocities From Oblique Time Lapse Photos And Terrestrial Based Lidar At The Helheim Glacier, Franklyn T. Dunbar Ii

Graduate Student Theses, Dissertations, & Professional Papers

Using time dependent observations derived from terrestrial LiDAR and oblique
time-lapse imagery, we demonstrate that a Bayesian approach to glacial motion es-
timation provides a concise way to incorporate multiple data products into a single
motion estimation procedure effectively producing surface velocity estimates with
an associated uncertainty. This approach brings both improved computational effi-
ciency, and greater scalability across observational time-frames when compared to
existing methods. To gauge efficacy, we apply these methods to a set of observa-
tions from the Helheim Glacier, a critical actor in contemporary mass loss trends
observed in the Greenland Ice Sheet. We find that …


An Assessment Of The Hydrological Trends Using Synergistic Approaches Of Remote Sensing And Model Evaluations Over Global Arid And Semi-Arid Regions, Wenzhao Li, Hesham El-Askary, Rejoice Thomas, Surya Prakash Tiwari, Karuppasamy Manikandan, Thomas Piechota, Daniele Struppa Dec 2020

An Assessment Of The Hydrological Trends Using Synergistic Approaches Of Remote Sensing And Model Evaluations Over Global Arid And Semi-Arid Regions, Wenzhao Li, Hesham El-Askary, Rejoice Thomas, Surya Prakash Tiwari, Karuppasamy Manikandan, Thomas Piechota, Daniele Struppa

Mathematics, Physics, and Computer Science Faculty Articles and Research

Drylands cover about 40% of the world’s land area and support two billion people, most of them living in developing countries that are at risk due to land degradation. Over the last few decades, there has been warming, with an escalation of drought and rapid population growth. This will further intensify the risk of desertification, which will seriously affect the local ecological environment, food security and people’s lives. The goal of this research is to analyze the hydrological and land cover characteristics and variability over global arid and semi-arid regions over the last decade (2010–2019) using an integrative approach of …


Groundwater Withdrawal Prediction Using Integrated Multitemporal Remote Sensing Data Sets And Machine Learning, S. Majumdar, Ryan G. Smith, J. J. Butler, V. Lakshmi Nov 2020

Groundwater Withdrawal Prediction Using Integrated Multitemporal Remote Sensing Data Sets And Machine Learning, S. Majumdar, Ryan G. Smith, J. J. Butler, V. Lakshmi

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Effective monitoring of groundwater withdrawals is necessary to help mitigate the negative impacts of aquifer depletion. In this study, we develop a holistic approach that combines water balance components with a machine learning model to estimate groundwater withdrawals. We use both multitemporal satellite and modeled data from sensors that measure different components of the water balance and land use at varying spatial and temporal resolutions. These remote sensing products include evapotranspiration, precipitation, and land cover. Due to the inherent complexity of integrating these data sets and subsequently relating them to groundwater withdrawals using physical models, we apply random forests -- …


A 30-Year Agroclimatic Analysis Of The Snake River Valley American Viticultural Area - Descriptive And Predictive Methods, Charles L. Becker Aug 2020

A 30-Year Agroclimatic Analysis Of The Snake River Valley American Viticultural Area - Descriptive And Predictive Methods, Charles L. Becker

Boise State University Theses and Dissertations

Climate change poses serious threats to global agriculture, however some localities and crops may benefit from increasing temperatures. Grape production in southern Idaho may be a beneficial example as vineyard acreage has increased over 300% since the designation of the Snake River American Viticultural Area (SRVAVA) in 2007. We perform a statistical characterization of agroclimate within the SRVAVA that centers around four primary objectives: utilization of a novel, 30-year high resolution climate dataset to provide insight and agrometrics unavailable at coarser resolutions, climatic implications of the unique topography within the SRVAVA, identification of statistical trends, and correlation of SRVAVA climate …