Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physical Sciences and Mathematics

A Mildly Relativistic Outflow From The Energentic, Fast-Rising Blue Optical Transient Css161010 In A Dwarf Galaxy, Deanne L. Coppejans, R. Margutti, G. Terreran, A. J. Nayana, E. R. Coughlin, T. Laskar, K. D. Alexander, M. Bietenholz, D. Caprioli, P. Chandra, M. R. Drout, D. Frederiks, C. Frohmaier, K. H. Hurley, C. S. Kochanek, M. Macleod, A. Meisner, P. E. Nugent, A. Ridnaia, D. J. Sand, D. Svinkin, C. Ward, S. Yang, A. Baldeschi, I. V. Chilingarian, Y. Dong, C. Esquivia, W. Fong, C. Guidorzi, P. Lundqvist, D. Milisavljevic May 2020

A Mildly Relativistic Outflow From The Energentic, Fast-Rising Blue Optical Transient Css161010 In A Dwarf Galaxy, Deanne L. Coppejans, R. Margutti, G. Terreran, A. J. Nayana, E. R. Coughlin, T. Laskar, K. D. Alexander, M. Bietenholz, D. Caprioli, P. Chandra, M. R. Drout, D. Frederiks, C. Frohmaier, K. H. Hurley, C. S. Kochanek, M. Macleod, A. Meisner, P. E. Nugent, A. Ridnaia, D. J. Sand, D. Svinkin, C. Ward, S. Yang, A. Baldeschi, I. V. Chilingarian, Y. Dong, C. Esquivia, W. Fong, C. Guidorzi, P. Lundqvist, D. Milisavljevic

Physics & Astronomy Faculty Research

We present X-ray and radio observations of the Fast Blue Optical Transient CRTS-CSS161010 J045834−081803 (CSS161010 hereafter) at t = 69–531 days. CSS161010 shows luminous X-ray (L x ~ 5 × 1039 erg s−1) and radio (L ν ~ 1029 erg s−1 Hz−1) emission. The radio emission peaked at ~100 days post-transient explosion and rapidly decayed. We interpret these observations in the context of synchrotron emission from an expanding blast wave. CSS161010 launched a mildly relativistic outflow with velocity Γβc ≥ 0.55c at ~100 days. This is faster than the non-relativistic AT 2018cow (Γβc ~ 0.1c) and closer to ZTF18abvkwla (Γβc …


The Planetary Luminosity Problem: " Missing Planets" And The Observational Consequences Of Episodi Accretion, Sean D. Brittain, Joan R. Najita, Ruobing Dong, Zhaohuan Zhu May 2020

The Planetary Luminosity Problem: " Missing Planets" And The Observational Consequences Of Episodi Accretion, Sean D. Brittain, Joan R. Najita, Ruobing Dong, Zhaohuan Zhu

Physics & Astronomy Faculty Research

The high occurrence rates of spiral arms and large central clearings in protoplanetary disks, if interpreted as signposts of giant planets, indicate that gas giants commonly form as companions to young stars (Myr) at orbital separations of 10–300 au. However, attempts to directly image this giant planet population as companions to more mature stars (>10 Myr) have yielded few successes. This discrepancy could be explained if most giant planets form by "cold start," i.e., by radiating away much of their formation energy as they assemble their mass, rendering them faint enough to elude detection at later times. In that …


Alma 0.88 Mm Survey Of Disks Around Planetary-Mass Companions, Ya-Lin Wu, Brendan P. Bowler, Patrick D. Sheehan, Sean M. Andrews, Gregory J. Herczeg, Adam L. Kraus, Luca Ricci, David J. Wilner, Zhaohuan Zhu Apr 2020

Alma 0.88 Mm Survey Of Disks Around Planetary-Mass Companions, Ya-Lin Wu, Brendan P. Bowler, Patrick D. Sheehan, Sean M. Andrews, Gregory J. Herczeg, Adam L. Kraus, Luca Ricci, David J. Wilner, Zhaohuan Zhu

Physics & Astronomy Faculty Research

Characterizing the physical properties and compositions of circumplanetary disks can provide important insights into the formation of giant planets and satellites. We report Atacama Large Millimeter/submillimeter Array 0.88 mm (Band 7) continuum observations of six planetary-mass (10–20 M Jup) companions: CT Cha b, 1RXS 1609 b, ROXs 12 b, ROXs 42B b, DH Tau b, and FU Tau b. No continuum sources are detected at the locations of the companions down to 3σ limits of 120–210 μJy. Given these nondetections, it is not clear whether disks around planetary-mass companions indeed follow the disk-flux–host-mass trend in the stellar regime. The faint …


Fast Radio Bursts From Interacting Binary Neutron Star Systems, Bing Zhang Feb 2020

Fast Radio Bursts From Interacting Binary Neutron Star Systems, Bing Zhang

Physics & Astronomy Faculty Research

Recent observations of repeating fast radio bursts (FRBs) suggest that some FRBs reside in an environment consistent with that of binary neutron star (BNS) mergers. The bursting rate for repeaters could be very high and the emission site is likely from a magnetosphere. We discuss a hypothesis of producing abundant repeating FRBs in BNS systems. Decades to centuries before a BNS system coalesces, the magnetospheres of the two neutron stars start to interact relentlessly. Abrupt magnetic reconnection accelerates particles, which emit coherent radio waves in bunches via curvature radiation. FRBs are detected as these bright radiation beams point toward Earth. …


Asteroid Belt Survival Through Stellar Evolution: Dependence On The Stellar Mass, Rebecca G. Martin, Mario Livio, Jeremy L. Smallwood, Cheng Chen Feb 2020

Asteroid Belt Survival Through Stellar Evolution: Dependence On The Stellar Mass, Rebecca G. Martin, Mario Livio, Jeremy L. Smallwood, Cheng Chen

Physics & Astronomy Faculty Research

Polluted white dwarfs are generally accreting terrestrial-like material that may originate from a debris belt like the asteroid belt in the Solar system. ... See full text for complete abstract.


An Ideal Testbed For Planet-Disk Interaction: Two Giant Protoplanets In Resonance Shaping The Pds 70 Protoplanetary Disk, Jaehan Bae, Zhaohuan Zhu, Clément Baruteau, Myriam Benisty, Cornelis P. Dullemong, Stefano Facchini, Andrea Isella, Miriam Keppler, Laura M. Pérez, Richard Teague Oct 2019

An Ideal Testbed For Planet-Disk Interaction: Two Giant Protoplanets In Resonance Shaping The Pds 70 Protoplanetary Disk, Jaehan Bae, Zhaohuan Zhu, Clément Baruteau, Myriam Benisty, Cornelis P. Dullemong, Stefano Facchini, Andrea Isella, Miriam Keppler, Laura M. Pérez, Richard Teague

Physics & Astronomy Faculty Research

While numerical simulations have been playing a key role in the studies of planet–disk interaction, testing numerical results against observations has been limited so far. With the two directly imaged protoplanets embedded in its circumstellar disk, PDS 70 offers an ideal testbed for planet–disk interaction studies. Using two-dimensional hydrodynamic simulations we show that the observed features can be well explained with the two planets in formation, providing strong evidence that previously proposed theories of planet–disk interaction are in action, including resonant migration, particle trapping, size segregation, and filtration. Our simulations suggest that the two planets are likely in 2:1 mean …


Photoionization Calculations Of The Radiation Force Due To Spectral Lines In Agns, Randall C. Dannen, Daniel Proga, Timothy R. Kallman, Tim Waters Sep 2019

Photoionization Calculations Of The Radiation Force Due To Spectral Lines In Agns, Randall C. Dannen, Daniel Proga, Timothy R. Kallman, Tim Waters

Physics & Astronomy Faculty Research

One of the main mechanisms that could drive mass outflows in active galactic nuclei (AGNs) is radiation pressure due to spectral lines. Although straightforward to understand, the actual magnitude of the radiation force is challenging to compute because the force depends on the physical conditions in the gas, as well as the strength, spectral energy distribution (SED), and geometry of the radiation field. We present results from our photoionization and radiation transfer calculations of the force multiplier, M(ξ, t), using the same radiation field to compute the gas photoionization and thermal balance. We assume low gas density (n = 104 …


Multiple Spiral Arms In The Disk Around Intermediate-Mass Binary Hd 34700a, John D. Monnier, Tim Harries, Jaehan Bae, Benjamin R. Setterholm, Anna Laws, Alicia Aarnio, Fred C. Adams, Sean Andrews, Nuria Calvet, Catherine Espaillat, Lee Hartmann, Stefan Kraus, Melissa Mcclure, Chris Miller, Rebecca Oppenheimer, David Wilner, Zhaohuan Zhu Feb 2019

Multiple Spiral Arms In The Disk Around Intermediate-Mass Binary Hd 34700a, John D. Monnier, Tim Harries, Jaehan Bae, Benjamin R. Setterholm, Anna Laws, Alicia Aarnio, Fred C. Adams, Sean Andrews, Nuria Calvet, Catherine Espaillat, Lee Hartmann, Stefan Kraus, Melissa Mcclure, Chris Miller, Rebecca Oppenheimer, David Wilner, Zhaohuan Zhu

Physics & Astronomy Faculty Research

We present the first images of the transition disk around the close binary system HD 34700A in polarized scattered light using the Gemini Planet Imager instrument on Gemini South. The J and H band images reveal multiple spiral-arm structures outside a large (R = 0.49" = 175 au) cavity along with a bluish spiral structure inside the cavity. The cavity wall shows a strong discontinuity and we clearly see significant non-azimuthal polarization Uphi consistent with multiple scattering within a disk at an inferred inclination ~42deg. Radiative transfer modeling along with a new Gaia distance suggest HD 37400A is a young …


A Physically-Based Type Ii Supernova Feedback Model In Sph Simulations, Keita Todoroki Aug 2014

A Physically-Based Type Ii Supernova Feedback Model In Sph Simulations, Keita Todoroki

UNLV Theses, Dissertations, Professional Papers, and Capstones

We implement and test a core-collapse Type II SN feedback that is physically motivated and produces good agreement with observations in galaxy formation simulations. The model includes both kinetic and thermal feedback, allowing wind particles to receive a velocity kick that mimics galactic winds and distributes mass and metallicity to the interstellar and intergalactic medium. We also include a phenomenological stellar feedback to study a possible enhancement of the efficiency of the SN-II feedback by creating lower-density ambient gas medium of the stellar populations by distribution of thermal energy. Our SN-II model is unique in the sense that it computes …


Topics In Galaxy Formation: Pairwise Velocities Of Dark Matter Halos And Molecular Hydrogen Regulated Star Formation In Cosmological Simulations, Robert Jo Thompson Dec 2012

Topics In Galaxy Formation: Pairwise Velocities Of Dark Matter Halos And Molecular Hydrogen Regulated Star Formation In Cosmological Simulations, Robert Jo Thompson

UNLV Theses, Dissertations, Professional Papers, and Capstones

In this dissertation we investigate two distinct challenges within the concordance LCDM model and an unrelated project.

The first is a discrepancy between theory and observation. A massive galaxy sub-cluster known as the `bullet' has fallen through a more massive parent galaxy cluster at a redshift of z=0.296.

Theory finds that in order to reproduce the observational quantities of this cluster, an unusually high relative velocity of v12=3000 km/s between the two cluster's parent halos is required.

We quantify the statistical probability of producing a `bullet-like' halo pair within large N-body simulations, and

conclude that either the LCDM model is …


Oral Presentation: The Universe In A Box, Jason Jaacks Apr 2011

Oral Presentation: The Universe In A Box, Jason Jaacks

Festival of Communities: UG Symposium (Posters)

When and how galaxies formed throughout the history of the Universe is one of the most fundamental questions of astronomy and astrophysics. As technology improves, astronomers are able to push the frontier of galaxy observation to a period when the Universe was less than 1 billion years old. This is when the first galaxies are beginning to form. However, beyond the limits of observational technology lies data fundamental to our complete understanding of these processes. Using state-of-the-art cosmological hydrodynamic computer codes combined with access to the nation’s largest and fastest supercomputers, we are able to simulate the formation and evolution …


Halo Occupation Of Lyman-Break Galaxies, Saju Varghese, Ken Nagamine, Jason Jaacks, Jun-Hwan Choi Apr 2011

Halo Occupation Of Lyman-Break Galaxies, Saju Varghese, Ken Nagamine, Jason Jaacks, Jun-Hwan Choi

Festival of Communities: UG Symposium (Posters)

Lyman-break galaxies (LBGs) are star-forming galaxies found at high redshift that provide large amounts of information on early star and galaxy formation. We use large-scale cosmological smoothed-particle hydrodynamical simulations to simulate the physical properties of LBGs, such as stellar mass, star-formation rate, and magnitude. In particular, we focus on the question of which dark matter (DM) halos host LBGs. Our simulation suggests that only 1.74% of all DM halos host LBGs, though among the massive DM halos with mass Mhalo >1011.5 Msun, the fraction is 51.93%. The occupation number of LBGs ranges from 1 to 17 per halo.


Dla-Lbg Cross-Correlation And Basic Properties Of Infrared Galaxies In Cosmological Simulations, Tae Song Lee Apr 2010

Dla-Lbg Cross-Correlation And Basic Properties Of Infrared Galaxies In Cosmological Simulations, Tae Song Lee

UNLV Theses, Dissertations, Professional Papers, and Capstones

PART I

We calculate the cross-correlation function (CCF) between damped Ly-alpha systems (DLAs) and Lyman break galaxies (LBGs) using cosmological hydrodynamic simulations at z = 3. We compute the CCF with two different methods. First, we assume that there is one DLA in each dark matter halo if its DLA cross section is non-zero. In our second approach we weight the pair-count by the DLA cross section of each halo, yielding a cross-section-weighted CCF. We also compute the angular CCF for direct comparison with observations. Finally, we calculate the auto-correlation functions of LBGs and DLAs, and their bias against the …