Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physical Sciences and Mathematics

The Effect Of Ionization Density In Applications Of Radiation Detection, Dosimetry, And Therapy, Daniel Mulrow Dec 2022

The Effect Of Ionization Density In Applications Of Radiation Detection, Dosimetry, And Therapy, Daniel Mulrow

Arts & Sciences Electronic Theses and Dissertations

This dissertation covers a wide range of topics but is linked by the common theme of radiation interacting with materials and studying the result of those interactions. The introduction describes the fundamentals of how radiation interacts with material and how we are able to detect that radiation and the application of how we use those interactions in radiation oncology. The thesis starts with a chapter detailing the temperature dependence of the photophysics in two organic scintillators. This chapter is the foundation for a future study that will look the degree to which these scintillators can distinguish between gammas and neutrons …


Functionalized Plasmonic Nanostructures For Ultrasensitive Single Cell Analysis, Priya Rathi Dec 2022

Functionalized Plasmonic Nanostructures For Ultrasensitive Single Cell Analysis, Priya Rathi

Arts & Sciences Electronic Theses and Dissertations

Ultrasensitive detection and quantification of soluble, secreted and cell surface-bound proteins is critical for advancing our understanding of cellular systems, enabling effective drug development, novel therapies, and bio-diagnostics. However, exiting technologies are largely limited by their sensitivity, making the detection and quantification of low-abundant proteins extremely challenging. This forms a major barrier in various fields of biology and biomedical sciences. In this work, we introduce novel cellular analysis methodologies based on plasmon-enhanced fluorescence for analyzing cell structure and probing surface and secreted proteins from cells. In the first part, we introduce plasmon-enhanced expansion microscopy and demonstrate the effectiveness of employing …


Investigating Applications Of Deep Learning For Diagnosis Of Post Traumatic Elbow Disease, Hugh James Dec 2022

Investigating Applications Of Deep Learning For Diagnosis Of Post Traumatic Elbow Disease, Hugh James

McKelvey School of Engineering Theses & Dissertations

Traumatic events such as dislocation, breaks, and arthritis of musculoskeletal joints can cause the development of post-traumatic joint contracture (PTJC). Clinically, noninvasive techniques such as Magnetic Resonance Imaging (MRI) scans are used to analyze the disease. Such procedures require a patient to sit sedentary for long periods of time and can be expensive as well. Additionally, years of practice and experience are required for clinicians to accurately recognize the diseased anterior capsule region and make an accurate diagnosis. Manual tracing of the anterior capsule is done to help with diagnosis but is subjective and timely. As a result, there is …


Six-Dimensional Single-Molecule Imaging With Isotropic Resolution Using A Multi-View Reflector Microscope, Oumeng Zhang, Zijian Guo, Yuanyuan He, Tingting Wu, Michael D. Vahey, Matthew D. Lew Dec 2022

Six-Dimensional Single-Molecule Imaging With Isotropic Resolution Using A Multi-View Reflector Microscope, Oumeng Zhang, Zijian Guo, Yuanyuan He, Tingting Wu, Michael D. Vahey, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Imaging of both the positions and orientations of single fluorophores, termed single-molecule orientation-localization microscopy, is a powerful tool for the study of biochemical processes. However, the limited photon budget associated with single-molecule fluorescence makes high-dimensional imaging with isotropic, nanoscale spatial resolution a formidable challenge. Here we realize a radially and azimuthally polarized multi-view reflector (raMVR) microscope for the imaging of the three-dimensional (3D) positions and 3D orientations of single molecules, with precisions of 10.9 nm and 2.0° over a 1.5-μm depth range. The raMVR microscope achieves 6D super-resolution imaging of Nile red molecules transiently bound to lipid-coated spheres, accurately resolving …


Speeding Up The Quantification Of Contrast Sensitivity Functions Using Multidimensional Bayesian Active Learning, Shohaib Shaffiey Aug 2022

Speeding Up The Quantification Of Contrast Sensitivity Functions Using Multidimensional Bayesian Active Learning, Shohaib Shaffiey

McKelvey School of Engineering Theses & Dissertations

No abstract provided.


Dynamics Of Spatiotemporal Heterogeneities In Particulate Intercalation Electrodes, Shubham Agrawal Aug 2022

Dynamics Of Spatiotemporal Heterogeneities In Particulate Intercalation Electrodes, Shubham Agrawal

McKelvey School of Engineering Theses & Dissertations

Electrochemical energy systems rely on particulate porous electrodes to store or convert energies. While the three-dimensional porous structures of the electrodes were introduced to maximize the interfacial area for better overall performance of the system, spatiotemporal heterogeneities arising from materials thermodynamics localize the charge transfer processes onto a limited portion of the available interfaces. These reaction heterogeneities may cause local hot and cold spots, and early battery failures. This dissertation focuses on the following three aspects of the dynamic reaction heterogeneities in the particulate cathodes and anodes in the lithium-ion batteries: (i) the real-time evolution of reaction heterogeneities in graphite …


Evaluation And Clinical Implementation Of A Dual-Energy Ct Stopping-Power Ratio Mapping Technique For Proton-Therapy Treatment Planning, Maria Jose Medrano Matamoros Aug 2022

Evaluation And Clinical Implementation Of A Dual-Energy Ct Stopping-Power Ratio Mapping Technique For Proton-Therapy Treatment Planning, Maria Jose Medrano Matamoros

McKelvey School of Engineering Theses & Dissertations

Proton radiotherapy has the potential to treat tumors with better conformal dose distribution than competing modalities when the rapid dose falloff at the end of the proton-beam range is correctly aligned to the edge of the clinical target volume (CTV). However, its clinical potential is dependent on the accurate localization of the Bragg-peak position from predicted stopping-power ratio maps. The method that is most commonly used in today’s clinical practice for predicting stopping-power ratio (SPR) consists of a stoichiometric calibrationtechnique based on single-energy CT (SECT) for direct estimation of patient-specific SPR distribution from vendor-reconstructed Hounsfield Unit (HU) images. Unfortunately, this …


Fate Of Metals In Presence Of Minerals And Mineral-Organic Assemblages, Neha Sharma Aug 2022

Fate Of Metals In Presence Of Minerals And Mineral-Organic Assemblages, Neha Sharma

McKelvey School of Engineering Theses & Dissertations

Metals can enter aquatic systems from natural and anthropogenic processes associated with weathering, sediment re-suspension, industrial activities, and atmospheric deposition. Metals pose health and environmental risks at high concentrations due to their potential toxicity and bioaccumulation, but many trace metals also serve as essential micronutrients for biogeochemical processes in natural aquatic systems. Biogeochemical processes such as methanogenesis, denitrification, and mercury methylation require transition metals such as nickel (Ni), cobalt (Co), copper (Cu), and molybdenum (Mo) for completion. These biogeochemical processes can be substantial contributors of greenhouse gases, such as methane (CH4) and nitrous oxide (N2O), into the atmosphere. The behavior, …


Model-Based Deep Learning For Computational Imaging, Xiaojian Xu Aug 2022

Model-Based Deep Learning For Computational Imaging, Xiaojian Xu

McKelvey School of Engineering Theses & Dissertations

This dissertation addresses model-based deep learning for computational imaging. The motivation of our work is driven by the increasing interests in the combination of imaging model, which provides data-consistency guarantees to the observed measurements, and deep learning, which provides advanced prior modeling driven by data. Following this idea, we develop multiple algorithms by integrating the classical model-based optimization and modern deep learning to enable efficient and reliable imaging. We demonstrate the performance of our algorithms by validating their performance on various imaging applications and providing rigorous theoretical analysis.

The dissertation evaluates and extends three general frameworks, plug-and-play priors (PnP), regularized …


Plasmonic Nanomaterials-Based Point-Of-Care Biosensors, Rohit Gupta Aug 2022

Plasmonic Nanomaterials-Based Point-Of-Care Biosensors, Rohit Gupta

McKelvey School of Engineering Theses & Dissertations

Point-of-care (POC) biosensors, although rapid and easy-to-use, are orders magnitude less sensitive than laboratory-based tests. Further they are plagued by poor stability of recognition element thus limiting its widespread applicability in resource-limited settings. Therefore, there is a critical need for realizing stable POC biosensors with sensitivity comparable to gold-standard laboratory-based tests. This challenge constitutes the fundamental basis of this dissertation work– to expand access to quality and accurate biodiagnostic tools. At the heart of these solutions lies plasmonic nanoparticles which exhibit unique optical properties which are attractive for label-free and labelled biosensors.Firstly, we improve the stability and applicability of label-free …


Modeling, Analysis, And Simulation To Reveal The Mechanisms Of Ciliary Beating, Louis Woodhams Aug 2022

Modeling, Analysis, And Simulation To Reveal The Mechanisms Of Ciliary Beating, Louis Woodhams

McKelvey School of Engineering Theses & Dissertations

Cilia are microscopic cellular appendages that help us breathe by clearing our airways, maintain the health of our central nervous system by circulating cerebrospinal fluid, and allow us to reproduce by transporting eggs and propelling sperm cells. Cilia even determine the asymmetry of our internal organs during embryonic development. However, the mechanisms underlying ciliary beating are not fully understood. Questions remain as to how arrays of the motor protein dynein generate the propulsive waveforms observed in cilia and how structural elements within the cilium and its connection to the cell deform during beating. In the current work, mathematical modeling, analysis, …


Development Of The Assessment Of Clinical Prediction Model Transportability (Apt) Checklist, Sean Chonghwan Yu Aug 2022

Development Of The Assessment Of Clinical Prediction Model Transportability (Apt) Checklist, Sean Chonghwan Yu

McKelvey School of Engineering Theses & Dissertations

Clinical Prediction Models (CPM) have long been used for Clinical Decision Support (CDS) initially based on simple clinical scoring systems, and increasingly based on complex machine learning models relying on large-scale Electronic Health Record (EHR) data. External implementation – or the application of CPMs on sites where it was not originally developed – is valuable as it reduces the need for redundant de novo CPM development, enables CPM usage by low resource organizations, facilitates external validation studies, and encourages collaborative development of CPMs. Further, adoption of externally developed CPMs has been facilitated by ongoing interoperability efforts in standards, policy, and …


Design & Analysis Of Mixed-Mode Integrated Circuit For Pulse-Shape Discrimination, Bryan Orabutt May 2022

Design & Analysis Of Mixed-Mode Integrated Circuit For Pulse-Shape Discrimination, Bryan Orabutt

McKelvey School of Engineering Theses & Dissertations

In nuclear science experiments it is usually necessary to determine the type of radiation, its energy and direction with considerable accuracy. The detection of neutrons and discriminating them from gamma rays is particularly difficult. A popular method of doing so is to measure characteristics intrinsic to the pulse shape of each radiation type in order to perform pulse-shape discrimination (PSD).

Historically, PSD capable systems have been designed with two approaches in mind: specialized analog circuitry, or digital signal processing (DSP). In this work we propose a PSD capable circuit topology using techniques from both the analog and DSP domains. We …


Resolving The Three-Dimensional Rotational And Translational Dynamics Of Single Molecules Using Radially And Azimuthally Polarized Fluorescence, Oumeng Zhang, Weiyan Zhou, Jin Lu, Tingting Wu, Matthew D. Lew Jan 2022

Resolving The Three-Dimensional Rotational And Translational Dynamics Of Single Molecules Using Radially And Azimuthally Polarized Fluorescence, Oumeng Zhang, Weiyan Zhou, Jin Lu, Tingting Wu, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

We report a radially and azimuthally polarized (raPol) microscope for high detection and estimation performance in single-molecule orientation-localization microscopy (SMOLM). With 5000 photons detected from Nile red (NR) transiently bound within supported lipid bilayers (SLBs), raPol SMOLM achieves 2.9 nm localization precision, 1.5° orientation precision, and 0.17 sr precision in estimating rotational wobble. Within DPPC SLBs, SMOLM imaging reveals the existence of randomly oriented binding pockets that prevent NR from freely exploring all orientations. Treating the SLBs with cholesterol-loaded methyl-β-cyclodextrin (MβCD-chol) causes NR’s orientational diffusion to be dramatically reduced, but curiously NR’s median lateral displacements drastically increase from 20.8 to …