Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Single‐Molecule 3d Orientation Imaging Reveals Nanoscale Compositional Heterogeneity In Lipid Membranes, Jin Lu, Hesam Mazidi, Tianben Ding, Oumeng Zhang, Matthew D. Lew Sep 2020

Single‐Molecule 3d Orientation Imaging Reveals Nanoscale Compositional Heterogeneity In Lipid Membranes, Jin Lu, Hesam Mazidi, Tianben Ding, Oumeng Zhang, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

In soft matter, thermal energy causes molecules to continuously translate and rotate, even in crowded environments, thereby impacting the spatial organization and function of most molecular assemblies, such as lipid membranes. Directly measuring the orientation and spatial organization of large collections (>3000 molecules μm−2) of single molecules with nanoscale resolution remains elusive. In this paper, we utilize SMOLM, single‐molecule orientation localization microscopy, to directly measure the orientation spectra (3D orientation plus “wobble”) of lipophilic probes transiently bound to lipid membranes, revealing that Nile red's (NR) orientation spectra are extremely sensitive to membrane chemical composition. SMOLM images resolve …


Elicitation And Aggregation Of Data In Knowledge Intensive Crowdsourcing, Dohoon Kim May 2020

Elicitation And Aggregation Of Data In Knowledge Intensive Crowdsourcing, Dohoon Kim

All Computer Science and Engineering Research

With the significant advance of internet and connectivity, crowdsourcing gained more popularity and various crowdsourcing platforms emerged. This project focuses on knowledge-intensive crowdsourcing, in which agents are presented with the tasks that require certain knowledge in domain. Knowledge-intensive crowdsourcing requires agents to have experiences on the specific domain. With the constraint of resources and its trait as sourcing from crowd, platform is likely to draw agents with different levels of expertise and knowledge and asking same task can result in bad performance. Some agents can give better information when they are asked with more general question or more knowledge-specific task …


A Virtual 4d Ct Scanner, Xiwen Li May 2020

A Virtual 4d Ct Scanner, Xiwen Li

All Computer Science and Engineering Research

4D CT scan is widely used in medical imaging. Images are acquired through phases. In this case, we can track the motion of organs such as heart. However, it also introduces motion artifacts. A lot of research focuses on remove these artifacts. It is difficult to acquire artifact data by a real CT scanner. In this project, we implement a virtual CT machine to simulate the real 4D CT scan. we also conduct experi- ments to check its clinical reality with respect to respiratory and heart motion parameters.


Centrality Of Blockchain, Zixuan Li May 2020

Centrality Of Blockchain, Zixuan Li

All Computer Science and Engineering Research

Decentralization is widely recognized as the property and one of most important advantage of blockchain over legacy systems. However, decentralization is often discussed on the consensus layer and recent research shows the trend of centralization on several subsystem of blockchain. In this project, we measured centralization of Bitcoin and Ethereum on source code, development eco-system, and network node levels. We found that the programming language of project is highly centralized, code clone is very common inside Bitcoin and Ethereum community, and developer contribution distribution is highly centralized. We further discuss how could these centralizations lead to security issues in blockchain. …


Solving Disappearance At Gastech With Visual Analytic Techniques, Saulet Yskak May 2020

Solving Disappearance At Gastech With Visual Analytic Techniques, Saulet Yskak

All Computer Science and Engineering Research

We are living in a society, where images and charts speak louder than words. Therefore, information visualization plays a major role in solving complex problems since it provides a visual summary of data that makes it easier to identify trends and patterns.

In this master project, I propose a web – based visual analytics tool that enables to analyze complex email and time based / event series data. The visual analytics framework uses test data from IEEE VAST Challenge 2014: Mini challenge 1 that concentrated on the disappearance of employees of a fictional GAStech company, but the tool allows users …


Measuring Localization Confidence For Quantifying Accuracy And Heterogeneity In Single-Molecule Super-Resolution Microscopy, Hesam Mazidi, Tianben Ding, Arye Nehorai, Matthew D. Lew Feb 2020

Measuring Localization Confidence For Quantifying Accuracy And Heterogeneity In Single-Molecule Super-Resolution Microscopy, Hesam Mazidi, Tianben Ding, Arye Nehorai, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

We present a computational method, termed Wasserstein-induced flux (WIF), to robustly quantify the accuracy of individual localizations within a single-molecule localization microscopy (SMLM) dataset without ground- truth knowledge of the sample. WIF relies on the observation that accurate localizations are stable with respect to an arbitrary computational perturbation. Inspired by optimal transport theory, we measure the stability of individual localizations and develop an efficient optimization algorithm to compute WIF. We demonstrate the advantage of WIF in accurately quantifying imaging artifacts in high-density reconstruction of a tubulin network. WIF represents an advance in quantifying systematic errors with unknown and complex distributions, …


A Computationally-Efficient Bound For The Variance Of Measuring The Orientation Of Single Molecules, Tingting Wu, Tianben Ding, Hesam Mazidi, Oumeng Zhang, Matthew D. Lew Feb 2020

A Computationally-Efficient Bound For The Variance Of Measuring The Orientation Of Single Molecules, Tingting Wu, Tianben Ding, Hesam Mazidi, Oumeng Zhang, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Modulating the polarization of excitation light, resolving the polarization of emitted fluorescence, and point spread function (PSF) engineering have been widely leveraged for measuring the orientation of single molecules. Typically, the performance of these techniques is optimized and quantified using the Cramér-Rao bound (CRB), which describes the best possible measurement variance of an unbiased estimator. However, CRB is a local measure and requires exhaustive sampling across the measurement space to fully characterize measurement precision. We develop a global variance upper bound (VUB) for fast quantification and comparison of orientation measurement techniques. Our VUB tightly bounds the diagonal elements of the …


Nanoscale Colocalization Of Fluorogenic Probes Reveals The Role Of Oxygen Vacancies In The Photocatalytic Activity Of Tungsten Oxide Nanowires, Meikun Shen, Tianben Ding, Steven T. Hartman, Fudong Wang, Christina Krucylak, Zheyu Wang, Che Tan, Bo Yin, Rohan Mishra, Matthew D. Lew, Bryce Sadtler Jan 2020

Nanoscale Colocalization Of Fluorogenic Probes Reveals The Role Of Oxygen Vacancies In The Photocatalytic Activity Of Tungsten Oxide Nanowires, Meikun Shen, Tianben Ding, Steven T. Hartman, Fudong Wang, Christina Krucylak, Zheyu Wang, Che Tan, Bo Yin, Rohan Mishra, Matthew D. Lew, Bryce Sadtler

Electrical & Systems Engineering Publications and Presentations

Defect engineering is a strategy that has been widely used to design active semiconductor photocatalysts. However, understanding the role of defects, such as oxygen vacancies, in controlling photocatalytic activity remains a challenge. Here, we report the use of chemically triggered fluorogenic probes to study the spatial distribution of active regions in individual tungsten oxide nanowires using super-resolution fluorescence microscopy. The nanowires show significant heterogeneity along their lengths for the photocatalytic generation of hydroxyl radicals. Through quantitative, coordinate-based colocalization of multiple probe molecules activated by the same nanowires, we demonstrate that the nanoscale regions most active for the photocatalytic generation of …


The Effects Of Mixed-Initiative Visualization Systems On Exploratory Data Analysis, Alvitta Ottley, Adam Kern Jan 2020

The Effects Of Mixed-Initiative Visualization Systems On Exploratory Data Analysis, Alvitta Ottley, Adam Kern

All Computer Science and Engineering Research

The primary purpose of information visualization is to act as a window between a user and the data. Historically, this has been accomplished via a single-agent framework: the only decision-maker in the relationship between visualization system and analyst is the analyst herself. Yet this framework arose not from first principles, but a necessity. Before this decade, computers were limited in their decision-making capabilities, especially in the face of large, complex datasets and visualization systems. This paper aims to present the design and evaluation of a mixed-initiative system that aids the user in handling large, complex datasets and dense visualization systems. …