Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 248

Full-Text Articles in Physical Sciences and Mathematics

Low Cost Magnetometer Calibration And Distributed Simultaneous Multipoint Ionospheric Measurements From A Sounding Rocket Platform, Joshua W. Milford Apr 2024

Low Cost Magnetometer Calibration And Distributed Simultaneous Multipoint Ionospheric Measurements From A Sounding Rocket Platform, Joshua W. Milford

Doctoral Dissertations and Master's Theses

Low-cost and low-size-weight-and-power (SWaP) magnetometers can provide greater accessibility for distributed simultaneous measurements in the ionosphere, either onboard sounding rockets or on CubeSats. The Space and Atmospheric Instrumentation Laboratory (SAIL) at Embry-Riddle Aeronautical University has launched a multitude of sounding rockets in recent history: one night-time mid-latitude rocket from Wallops Flight Facility in August 2022 and three mid-latitude rockets from White Sands Missile Range during the October 2023 annular solar eclipse. All rockets had a comprehensive suite of instruments for electrodynamics and neutral dynamics measurements. Among this suite was one science-grade three-axis fluxgate magnetometer (Billingsley TFM65VQS / TFM100G2) and up …


Static And Dynamic State Estimation Applications In Power Systems Protection And Control Engineering, Ibukunoluwa Olayemi Korede Dec 2023

Static And Dynamic State Estimation Applications In Power Systems Protection And Control Engineering, Ibukunoluwa Olayemi Korede

Doctoral Dissertations

The developed methodologies are proposed to serve as support for control centers and fault analysis engineers. These approaches provide a dependable and effective means of pinpointing and resolving faults, which ultimately enhances power grid reliability. The algorithm uses the Least Absolute Value (LAV) method to estimate the augmented states of the PCB, enabling supervisory monitoring of the system. In addition, the application of statistical analysis based on projection statistics of the system Jacobian as a virtual sensor to detect faults on transmission lines. This approach is particularly valuable for detecting anomalies in transmission line data, such as bad data or …


Use Of Digital Twins To Mitigate Communication Failures In Microgrids, Andrew Eggebeen Dec 2023

Use Of Digital Twins To Mitigate Communication Failures In Microgrids, Andrew Eggebeen

Theses and Dissertations

This work investigates digital twin (DT) applications for electric power system (EPS) resilience. A novel DT architecture is proposed consisting of a physical twin, a virtual twin, an intelligent agent, and data communications. Requirements for the virtual twin are identified. Guidelines are provided for generating, capturing, and storing data to train the intelligent agent. The relationship between the DT development process and an existing controller hardware-in-the-loop (CHIL) process is discussed. To demonstrate the proposed DT architecture and development process, a DT for a battery energy storage system (BESS) is created based on the simulation of an industrial nanogrid. The creation …


A Design Strategy To Improve Machine Learning Resiliency Of Physically Unclonable Functions Using Modulus Process, Yuqiu Jiang Dec 2023

A Design Strategy To Improve Machine Learning Resiliency Of Physically Unclonable Functions Using Modulus Process, Yuqiu Jiang

Theses and Dissertations

Physically unclonable functions (PUFs) are hardware security primitives that utilize non-reproducible manufacturing variations to provide device-specific challenge-response pairs (CRPs). Such primitives are desirable for applications such as communication and intellectual property protection. PUFs have been gaining considerable interest from both the academic and industrial communities because of their simplicity and stability. However, many recent studies have exposed PUFs to machine-learning (ML) modeling attacks. To improve the resilience of a system to general ML attacks instead of a specific ML technique, a common solution is to improve the complexity of the system. Structures, such as XOR-PUFs, can significantly increase the nonlinearity …


Diverse Impacts Of Commercial Ev Charging Load Infrastructure On Electric Power Grid, Antonio Avila Dec 2023

Diverse Impacts Of Commercial Ev Charging Load Infrastructure On Electric Power Grid, Antonio Avila

Open Access Theses & Dissertations

With the rising prominence of electric vehicles (EVs) in the transportation sector, this thesis delves into the critical nexus between commercial EVs, charging infrastructure, and their consequential impacts on the power grid. As commercial EVs, particularly medium and heavy-duty variants, gain traction as viable alternatives in the commercial transportation landscape, understanding the intricacies of their charging requirements becomes paramount. This thesis critically examines the technological and logistical dimensions of the charging infrastructure for supporting commercial EVs, evaluating the consequential implications on the power grid and proposing strategies for mitigation through the utilization of Distributed Energy Resources (DERs). In tandem with …


Inkjet-Printed Electrochemical Sensors For Lead Detection, Annatoma Arif Aug 2023

Inkjet-Printed Electrochemical Sensors For Lead Detection, Annatoma Arif

Open Access Theses & Dissertations

This PhD dissertation research has developed a simple, miniaturized, sensitive, selective, reproducible, and disposable 3D (inkjet printed – additive manufacturing technology) gold (Au) plated electrochemical sensor (ECS) on shape memory polymer (SMP) for aqueous lead detection. This technology has shown promising performance in the application of electrochemical sensing (lead (II) detection) due to increased effective electrode surface area (7.25 mm^2 ± 0.15 mm^2) despite miniaturizing lateral surface area (4.19 mm^2). The design, fabrication processes, optimization including bismuth functionalization, evaluation, uncertainty analysis, and cost analysis of the novel SMP based inkjet printed Au plated sensor have been delineated in this manuscript …


Study Of Radiation Effects In Gan-Based Devices, Han Gao Jul 2023

Study Of Radiation Effects In Gan-Based Devices, Han Gao

Electrical Engineering Theses and Dissertations

Radiation tolerance of wide-bandgap Gallium Nitride (GaN) high-electron-mobility transistors (HEMT) has been studied, including X-ray-induced TID effects, heavy-ion-induced single event effects, and neutron-induced single event effects. Threshold voltage shift is observed in X-ray irradiation experiments, which recovers over time, indicating no permanent damage formed inside the device. Heavy-ion radiation effects in GaN HEMTs have been studied as a function of bias voltage, ion LET, radiation flux, and total fluence. A statistically significant amount of heavy-ion-induced gate dielectric degradation was observed, which consisted of hard breakdown and soft breakdown. Specific critical injection level experiments were designed and carried out to explore …


Addressing The Challenged Of Dcop Based Decision-Making Algorithms In Modern Power Systems, Luis Daniel Ramirez Burgueno May 2023

Addressing The Challenged Of Dcop Based Decision-Making Algorithms In Modern Power Systems, Luis Daniel Ramirez Burgueno

Open Access Theses & Dissertations

Natural disasters have been determined as the leading cause of power outages, causing not only huge economic losses, but also the interruption of crucial welfare activities and the arise of security concerns. Because of the later, decision-making considering grid modernization, power system economics, and system resiliency has been a crucial theme in power systemsâ?? research. The need to better withstand catastrophic events and reducing the dependency of bulky generating units has propelled the development and better management of behind-the-meter generation or distributed energy resources (DERs). DERs can assist in the grid in different manners, not only by meeting energy demand …


Cellulose Nanocrystal Dielectric Elastomers, David Frailey May 2023

Cellulose Nanocrystal Dielectric Elastomers, David Frailey

Theses and Dissertations

Optical devices, such as filters and sensors, have numerous advantages including compactness in size and immunity from electromagnetic interference. The fabrication of optical devices often requires precision and complicated processing, resulting in expensive and delicate components. Cellulose nanocrystals (CNCs) are biomaterials that can self-assemble into liquid crystals, similar to those used in electronic displays. This material can function as an optical grating by reflecting/transmitting circularly polarized light at certain wavelengths and viewing angles. Since gratings are building blocks of optical systems, like lasers and lidars, their fabrication at low costs will enable the further proliferation of optical technologies. Furthermore, if …


The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels May 2023

The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels

Electronic Theses and Dissertations

The purpose of this study was to investigate and compare the corrosion mechanisms between wrought and additive-manufactured (3D-printed) copper and stainless steel. The experimental procedure consisted of measuring the open circuit potential, electrochemical impedance spectroscopy, linear sweep voltammetry, Tafel analysis, surface topology, and scanning electron microscopy for each metal within salt water, tap water, sulfuric acid, and synthetic body fluid (excluding copper in synthetic body fluid).

Overall, printed stainless steel was more corrosion-resistant than wrought stainless steel in tap water and synthetic body fluid based on OCP, LSV, and surface topology results. Additionally, printed copper was more corrosion-resistant than wrought …


Towards Explainable Ai Using Attribution Methods And Image Segmentation, Garrett J. Rocks Jan 2023

Towards Explainable Ai Using Attribution Methods And Image Segmentation, Garrett J. Rocks

Honors Undergraduate Theses

With artificial intelligence (AI) becoming ubiquitous in a broad range of application domains, the opacity of deep learning models remains an obstacle to adaptation within safety-critical systems. Explainable AI (XAI) aims to build trust in AI systems by revealing important inner mechanisms of what has been treated as a black box by human users. This thesis specifically aims to improve the transparency and trustworthiness of deep learning algorithms by combining attribution methods with image segmentation methods. This thesis has the potential to improve the trust and acceptance of AI systems, leading to more responsible and ethical AI applications. An exploratory …


Unmanned Aircraft Systems For Precision Meteorology: An Analysis Of Gnss Position Measurement Error And Embedded Sensor Development, Karla S. Ladino Jan 2023

Unmanned Aircraft Systems For Precision Meteorology: An Analysis Of Gnss Position Measurement Error And Embedded Sensor Development, Karla S. Ladino

Theses and Dissertations--Biosystems and Agricultural Engineering

The overarching objective of this research was to enhance our comprehension of the three-dimensional precision of meteorological measurements obtained using small unmanned aircraft systems (UAS). Two complimentary experiments were conducted to achieve this objective.

The first experiment entailed the development and implementation of a system to determine the global navigation satellite system (GNSS) position accuracy on a UAS platform. This system was utilized to assess the static and dynamic accuracy of L1 and L1/L2 GNSS receivers in real-time kinematic (RTK) and non-RTK fix modes. Adjusted two-sample t-tests revealed significant differences in horizontal and vertical error between RTK and non-RTK receivers …


Assessing The Performance Of A Particle Swarm Optimization Mobility Algorithm In A Hybrid Wi-Fi/Lora Flying Ad Hoc Network, William David Paredes Jan 2023

Assessing The Performance Of A Particle Swarm Optimization Mobility Algorithm In A Hybrid Wi-Fi/Lora Flying Ad Hoc Network, William David Paredes

UNF Graduate Theses and Dissertations

Research on Flying Ad-Hoc Networks (FANETs) has increased due to the availability of Unmanned Aerial Vehicles (UAVs) and the electronic components that control and connect them. Many applications, such as 3D mapping, construction inspection, or emergency response operations could benefit from an application and adaptation of swarm intelligence-based deployments of multiple UAVs. Such groups of cooperating UAVs, through the use of local rules, could be seen as network nodes establishing an ad-hoc network for communication purposes.

One FANET application is to provide communication coverage over an area where communication infrastructure is unavailable. A crucial part of a FANET implementation is …


Exploration Of Robotics Need In The Medical Field And Robotic Arm Operation Via Glove Control, Aditi Vijayvergia Jan 2023

Exploration Of Robotics Need In The Medical Field And Robotic Arm Operation Via Glove Control, Aditi Vijayvergia

Master’s Theses

This thesis project is an exercise in getting hands-on experience in redesigning and modifying a robotic system. It also involves understanding the current need for robotic applications in hospital settings. To achieve the above, a thorough literature review of the current state of robotics in a hospital setting was conducted. Moreover, a number of interviews with medical care professionals were completed. Three main themes were obtained from the literature review and five main themes were obtained from the interviews which will be presented in this thesis report. The next phase of the project involved redesigning a system that is composed …


Electrical Modeling For Dynamic Performance Prediction And Optimization Of Mcpms Layout, Quang Minh Le Dec 2022

Electrical Modeling For Dynamic Performance Prediction And Optimization Of Mcpms Layout, Quang Minh Le

Graduate Theses and Dissertations

In recent years, the fast development of Multichip Power Modules (MCPM) packaging and Wide Bandgap (WBG) technology has enabled higher voltage and current ratings, better thermal performance, lower parasitic parameters, and higher mechanical reliability. However, the design of the MCPM layout is a multidisciplinary problem leading to many time-consuming analyses and tedious design processes. Because of these challenges, the design automation tool for MCPM layout has become an emerging research area and gained much attention from the power electronics community. The two critical objectives of a design automation tool for MCPM layout are fast and accurate models for design insights …


Sers Platform For Single Fiber Endoscopic Probes, Debsmita Biswas Nov 2022

Sers Platform For Single Fiber Endoscopic Probes, Debsmita Biswas

LSU Doctoral Dissertations

Molecular detection techniques have huge potential in clinical environments. In addition to many other molecular detection techniques, endoscopic Raman spectroscopy has great ability in terms of minimal invasiveness and real-time spectra acquisition. However, Raman Effect is low in sensitivity, limiting the application. Surface-Enhanced Raman Scattering (SERS), addresses this limitation. SERS brings rough nano-metallic surfaces in contact with specimen molecules which enormously enhances Raman signals. This provides Raman spectroscopy with immense capabilities for diverse fields of applications.

Generally, in clinical probe applications, the spectrometer is brought near the target molecules for detection. Typically, optical fibers are used to couple spectrometers to …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


An Inexpensive Maximum Power Point Tracking System For An Insulated Solar Electric Cooker Using An Off-The-Shelf Buck Converter, Andrew A. Perez Sep 2022

An Inexpensive Maximum Power Point Tracking System For An Insulated Solar Electric Cooker Using An Off-The-Shelf Buck Converter, Andrew A. Perez

Physics

A specialized control circuit using an off-the-shelf buck converter is built for an Insulated Solar Electric Cooker (ISEC). Cost and efficient power delivery are the focus. An ISEC is synonymous to a direct load heat resistor, allowing a specific maximum power point tracking (MPPT) algorithm and fewer components. Only a microcontroller, voltage sensor, and digital-to-analog converter are used with the buck converter to maximize the power delivered by a 100W solar panel for the 3.3Ω load.


Developing Positive Thermal Coefficient (Ptc) Heaters For Solar Electric Cooking, Katarina Ivana Brekalo, Andrew Shepherd Sep 2022

Developing Positive Thermal Coefficient (Ptc) Heaters For Solar Electric Cooking, Katarina Ivana Brekalo, Andrew Shepherd

Physics

Positive Thermal Coefficients, PTCs, are materials that abruptly change in resistance in response to changes in temperature. The purpose of this experiment is to explore the viability of using the switching type ceramic PTC thermistor as a replacement for current resistive heaters. These types of PTCs have a nonlinear change in resistance with increases in temperature. This device will be used as a temperature-controlling heating element intended to power an Insulated Solar Electric Cooker (ISEC). The ISEC is designed to cook meals throughout the day for impacted communities as an alternative cooking method that doesn’t require biofuel as an energy …


Performance Analysis Of The Dominant Mode Rejection Beamformer, Enlong Hu Aug 2022

Performance Analysis Of The Dominant Mode Rejection Beamformer, Enlong Hu

Dissertations

In array signal processing over challenging environments, due to the non-stationarity nature of data, it is difficult to obtain enough number of data snapshots to construct an adaptive beamformer (ABF) for detecting weak signal embedded in strong interferences. One type of adaptive method targeting for such applications is the dominant mode rejection (DMR) method, which uses a reshaped eigen-decomposition of sample covariance matrix (SCM) to define a subspace containing the dominant interferers to be rejected, thereby allowing it to detect weak signal in the presence of strong interferences. The DMR weight vector takes a form similar to the adaptive minimum …


Model-Based Deep Learning For Computational Imaging, Xiaojian Xu Aug 2022

Model-Based Deep Learning For Computational Imaging, Xiaojian Xu

McKelvey School of Engineering Theses & Dissertations

This dissertation addresses model-based deep learning for computational imaging. The motivation of our work is driven by the increasing interests in the combination of imaging model, which provides data-consistency guarantees to the observed measurements, and deep learning, which provides advanced prior modeling driven by data. Following this idea, we develop multiple algorithms by integrating the classical model-based optimization and modern deep learning to enable efficient and reliable imaging. We demonstrate the performance of our algorithms by validating their performance on various imaging applications and providing rigorous theoretical analysis.

The dissertation evaluates and extends three general frameworks, plug-and-play priors (PnP), regularized …


An Unmanned Surface Vehicle: Autonomous Sensor Integration System For Bathymetric Surveys, Fernando Sotelo Torres Aug 2022

An Unmanned Surface Vehicle: Autonomous Sensor Integration System For Bathymetric Surveys, Fernando Sotelo Torres

Open Access Theses & Dissertations

Unmanned Surface Vehicles (USVs) have been applied to earth sciences, with only a few studies conducted in water environments, as these systems provide autonomous measurement capabilities and transferability to other environmental settings. In this thesis, a reliable, yet economical, USV has been developed for bathymetric surveying of lakes. The system combines an autonomous navigation framework, environmental sensors and a multibeam echosounder to collect submerged topography, temperature, windspeed and monitor the vehicle status during prescribed path planning missions.

The main objective of this study is to provide a methodological framework to build a USV, with independent decision-making, efficient control, and long-range …


Reduced Fuel Emissions Through Connected Vehicles And Truck Platooning, Paul D. Brummitt Aug 2022

Reduced Fuel Emissions Through Connected Vehicles And Truck Platooning, Paul D. Brummitt

Electronic Theses and Dissertations

Vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication enable the sharing, in real time, of vehicular locations and speeds with other vehicles, traffic signals, and traffic control centers. This shared information can help traffic to better traverse intersections, road segments, and congested neighborhoods, thereby reducing travel times, increasing driver safety, generating data for traffic planning, and reducing vehicular pollution. This study, which focuses on vehicular pollution, used an analysis of data from NREL, BTS, and the EPA to determine that the widespread use of V2V-based truck platooning—the convoying of trucks in close proximity to one another so as to reduce air drag …


Diverse Effects Of Ev Charging Infrastructure On Electric Power Distribution Systems, Travis Michael Moore Newbolt Aug 2022

Diverse Effects Of Ev Charging Infrastructure On Electric Power Distribution Systems, Travis Michael Moore Newbolt

Open Access Theses & Dissertations

The advanced technology of today has allowed for an avenue into cleaner forms of energy that will not only protect our environment but also continue to advance our society. Among the many forms of clean energy, electric vehicles (EV) have the potential to mitigate our consumption of fossil fuels in vehicle transportation industries. In the U.S. for 2021, EVs account for approximately 700,000 registrations. That number is projected to increase to 2 million by 2030. Although EVs do reduce the number of emissions when compared to an internal combustion engine, they do however shift the responsibility to utility companies to …


Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi Jul 2022

Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi

LSU Doctoral Dissertations

Several reports state that it is crucial to analyze nanoscale semiconductor materials and devices with potential benefits to meet the need for next-generation nanoelectronics, bio, and nanosensors. The progress in the electronics field is as significant now, with modern technology constantly evolving and a greater focus on more efficient robust optoelectronic applications. This dissertation focuses on the study and examination of the practicality of Electrophoretic Deposition (EPD) of zinc oxide (ZnO) nanoparticles (NPs) for use in semiconductor applications.

The feasibility of several synthesized electrolytes, with and without surfactants and APTES surface functionalization, is discussed. The primary objective of this study …


One-Stage Blind Source Separation Via A Sparse Autoencoder Framework, Jason Anthony Dabin May 2022

One-Stage Blind Source Separation Via A Sparse Autoencoder Framework, Jason Anthony Dabin

Dissertations

Blind source separation (BSS) is the process of recovering individual source transmissions from a received mixture of co-channel signals without a priori knowledge of the channel mixing matrix or transmitted source signals. The received co-channel composite signal is considered to be captured across an antenna array or sensor network and is assumed to contain sparse transmissions, as users are active and inactive aperiodically over time. An unsupervised machine learning approach using an artificial feedforward neural network sparse autoencoder with one hidden layer is formulated for blindly recovering the channel matrix and source activity of co-channel transmissions. The BSS sparse autoencoder …


X-Band Phased-Array Weather-Radar Polarimetry Testbed, William Heberling Iv May 2022

X-Band Phased-Array Weather-Radar Polarimetry Testbed, William Heberling Iv

Doctoral Dissertations

Phased-array weather radar have potential to replace reflector dish radar in major weather radar networks such as NEXRAD, providing faster update times and greater scan flexibility. However, the use of electronic scanning introduces polarization errors on weather radar measurables, requiring polarimetric bias calibration. The sources of polarimetric bias have been described theoretically, but experimental verification is still limited. Additionally, no standard method of calibration for polarimetric bias exists for phased-arrays. Therefore, the University of Massachusetts Amherst (UMass) presents a fully operational X-Band phased-array weather radar polarimetric testbed. The testbed evaluates the calibration of a planar dual-polarization X-band phased-array radar through …


Grid-Connected Renewable Energy Systems For Residential Hvac Load Management, Oscar Samuel Acosta May 2022

Grid-Connected Renewable Energy Systems For Residential Hvac Load Management, Oscar Samuel Acosta

Open Access Theses & Dissertations

With an ongoing mission of utility operators to maintain a resilient and reliable power grid in the face of continuously increasing load demand, it is essential that advancements be made in developing both technology and methodology to help account for the increasing energy requirements. According to the U.S. Department of Energy (DOE) and Energy Information Administration (EIA), the residential end-use sector alone counted for 22% of all electricity used in the U.S. in 2020. Of this, approximately 32% of household electricity load is the direct result of air conditioning and space heating units (HVAC). One way to account for this …


Co-Planar Waveguides For Microwave Atom Chips, Morgan Logsdon May 2022

Co-Planar Waveguides For Microwave Atom Chips, Morgan Logsdon

Undergraduate Honors Theses

This thesis describes research to develop co-planar waveguides (CPW) for coupling microwaves from mm-scale coaxial cables into 50 μm-scale microstrip transmission lines of a microwave atom chip. This new atom chip confines and manipulates atoms using spin-specific microwave AC Zeeman potentials and is particularly well suited for trapped atom interferometry. The coaxial-to-microstrip coupler scheme uses a focused CPW (FCPW) that shrinks the microwave field mode while maintaining a constant 50 Ω impedance for optimal power coupling. The FCPW development includes the simulation, design, fabrication, and testing of multiple CPW and microstrip prototypes using aluminum nitride substrates. Notably, the FCPW approach …


The Bracelet: An American Sign Language (Asl) Interpreting Wearable Device, Samuel Aba, Ahmadre Darrisaw, Pei Lin, Thomas Leonard May 2022

The Bracelet: An American Sign Language (Asl) Interpreting Wearable Device, Samuel Aba, Ahmadre Darrisaw, Pei Lin, Thomas Leonard

Chancellor’s Honors Program Projects

No abstract provided.