Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Ole J Mengshoel

Bayesian Networks

Articles 31 - 34 of 34

Full-Text Articles in Physical Sciences and Mathematics

Sensor Validation Using Bayesian Networks, Ole J. Mengshoel, Adnan Darwiche, Serdar Uckun Jan 2008

Sensor Validation Using Bayesian Networks, Ole J. Mengshoel, Adnan Darwiche, Serdar Uckun

Ole J Mengshoel

One of NASA’s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation techniques address this problem: given a vector of sensor readings, decide whether sensors have failed, therefore producing bad data. We take in this paper a probabilistic approach, using Bayesian networks, to diagnosis and sensor validation, and investigate several relevant but slightly different Bayesian network queries. We emphasize that onboard inference can be performed on a …


Diagnosing Faults In Electrical Power Systems Of Spacecraft And Aircraft, Ole J. Mengshoel, Adnan Darwichse, Keith Cascio, Mark Chavira, Scott Poll, Serdar Uckun Dec 2007

Diagnosing Faults In Electrical Power Systems Of Spacecraft And Aircraft, Ole J. Mengshoel, Adnan Darwichse, Keith Cascio, Mark Chavira, Scott Poll, Serdar Uckun

Ole J Mengshoel

Electrical power systems play a critical role in spacecraft and aircraft. This paper discusses our development of a diagnostic capability for an electrical power system testbed, ADAPT, using probalistic techniques. In the context of ADAPT, we present two challenges, regarding modelling and real-time performance, often encountered in real-world diagnostic applications. To meet the modelling challenge, we discuss our novel high-level specification language which supports auto-generation of Bayesian networks. To meet the real-time challenge, we compile Bayesian networks intro arithmetic circuits. Arithmetic circuits typically have small footprints and are optimized for the real-time avionics systems found in spacecraft and aircraft. Using …


Designing Resource-Bounded Reasoners Using Bayesian Networks: System Health Monitoring And Diagnosis, Ole J. Mengshoel Apr 2007

Designing Resource-Bounded Reasoners Using Bayesian Networks: System Health Monitoring And Diagnosis, Ole J. Mengshoel

Ole J Mengshoel

In this work we are concerned with the conceptual design of large-scale diagnostic and health management systems that use Bayesian networks. While they are potentially powerful, improperly designed Bayesian networks can result in too high memory requirements or too long inference times, to they point where they may not be acceptable for real-time diagnosis and health management in resource-bounded systems such as NASA’s aerospace vehicles. We investigate the clique tree clustering approach to Bayesian network inference, where increasing the size and connectivity of a Bayesian network typically also increases clique tree size. This paper combines techniques for analytically characterizing clique …


Controlled Generation Of Hard And Easy Bayesian Networks: Impact On Maximal Clique Size In Tree Clustering, Ole J. Mengshoel, David C. Wilkins, Dan Roth Dec 2005

Controlled Generation Of Hard And Easy Bayesian Networks: Impact On Maximal Clique Size In Tree Clustering, Ole J. Mengshoel, David C. Wilkins, Dan Roth

Ole J Mengshoel

This article presents and analyzes algorithms that systematically generate random Bayesian networks of varying difficulty levels, with respect to inference using tree clustering. The results are relevant to research on efficient Bayesian network inference, such as computing a most probable explanation or belief updating, since they allow controlled experimentation to determine the impact of improvements to inference algorithms. The results are also relevant to research on machine learning of Bayesian networks, since they support controlled generation of a large number of data sets at a given difficulty level. Our generation algorithms, called BPART and MPART, support controlled but random construction …