Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physical Sciences and Mathematics

The Interaction Of Different Primary Producers And Physical And Chemical Dynamics Of An Urban Shallow Lake, Majid Sahin Sep 2022

The Interaction Of Different Primary Producers And Physical And Chemical Dynamics Of An Urban Shallow Lake, Majid Sahin

Dissertations, Theses, and Capstone Projects

An artificial urban shallow lake, Prospect Park Lake (PPL), is situated on a terminal moraine in Brooklyn New York, and supplied with municipal water treated with ortho-phosphates. The constant input of the phosphate nutrient is the primary source of eutrophication in the lake. The numerous pools along the water course houses various aquatic phototrophs, which influence the water quality and the state of the system, driving conditions into favoring the survival of their species. In the first half of the dissertation, the focus of the project is on analyzing how the different primary producers in different regions of PPL affect …


Determining The Effects Of Elevated Carbon Dioxide On Soil Acidification, Cation Depletion, And Soil Inorganic Carbon And Mapping Soil Carbons Using Artificial Intelligence, Jannatul Ferdush Aug 2022

Determining The Effects Of Elevated Carbon Dioxide On Soil Acidification, Cation Depletion, And Soil Inorganic Carbon And Mapping Soil Carbons Using Artificial Intelligence, Jannatul Ferdush

Theses and Dissertations

Soil carbon is the largest sink and source of the global carbon cycle and is disturbed by several natural, anthropogenic, and environmental factors. The global increase of atmospheric CO2 affects soil carbon cycling through varied biogeochemical processes. The first chapter is a compilation of current information on potential factors triggering soil acidification and weathering mechanisms under elevated CO2 and their consequences on soil inorganic carbon (SIC) pool and quality. Soil water content and precipitation were critical factors influencing elevated CO2 effects on the SIC pool. The second chapter examines a detailed column experiment in which six soils …


Learning From Machines: Insights In Forest Transpiration Using Machine Learning Methods, Morgan Tholl Jul 2022

Learning From Machines: Insights In Forest Transpiration Using Machine Learning Methods, Morgan Tholl

Dissertations and Theses

Machine learning has been used as a tool to model transpiration for individual sites, but few models are capable of generalizing to new locations without calibration to site data. Using the global SAPFLUXNET database, 95 tree sap flow data sites were grouped using three clustering strategies: by biome, by tree functional type, and through use of a k-means unsupervised clustering algorithm. Two supervised machine learning algorithms, a random forest algorithm and a neural network algorithm, were used to build machine learning models that predicted transpiration for each cluster. The performance and feature importance in each model were analyzed and compared …


Patterns Of Dissolved Methane In Groundwater And Its Contribution To Emissions Inventories, Amanda E. Campbell Jul 2022

Patterns Of Dissolved Methane In Groundwater And Its Contribution To Emissions Inventories, Amanda E. Campbell

Dissertations - ALL

The Marcellus Shale is the largest shale gas play in the U.S. production of natural gas using high-volume hydraulic fracturing (HVHF) and production is prevalent throughout the play except in New York (NY), where it is currently banned. High concentrations of methane, the main component of natural gas, in groundwater, as well as its presence in the atmosphere, can have negative consequences. In this dissertation, three aspects of this issue are explored: 1) how and why naturally-occurring methane concentrations vary through time; 2) how elevated naturally-occurring methane concentrations in domestic water wells can be predicted from commonly observed well characteristics; …


An Interdisciplinary Approach To Understanding Volcanoes And Their Processes, Katherine Cosburn May 2022

An Interdisciplinary Approach To Understanding Volcanoes And Their Processes, Katherine Cosburn

Physics & Astronomy ETDs

To better understand volcanoes and their processes is important from both a fundamental science perspective and for hazard monitoring purposes. The complexity and limitations we face in pursuing such a science are numerous and this dissertation explores how an interdisciplinary approach combining physics, computer science, and volcanology can address this complexity in a straightforward and meaningful way. This is achieved through various modelling techniques across three studies: (1) a first-order analytic modelling of stratovolcano topographic shape, (2) the use of a Bayesian joint inversion on gravity and novel cosmic-ray muon measurements for imaging flat-lying subsurface density anomalies, and (3) the …


Computational Approaches To Understanding Subduction Zone Geodynamics, Surface Heat Flow, And The Metamorphic Rock Record, Buchanan C. Kerswell May 2022

Computational Approaches To Understanding Subduction Zone Geodynamics, Surface Heat Flow, And The Metamorphic Rock Record, Buchanan C. Kerswell

Boise State University Theses and Dissertations

Pressure-temperature (PT) estimates from exhumed high-pressure (HP) metamorphic rocks and global surface heat flow observations evidently encode information about subduction zone thermal structure and the nature of mechanical and chemical processing of subducted materials along the interface between converging plates. Previous work demonstrates the possibility of decoding such geodynamic information by comparing numerical geodynamic models with empirical observations of surface heat flow and the metamorphic rock record. However, ambiguous interpretations can arise from this line of inquiry with respect to thermal gradients, plate coupling, and detachment and recovery of subducted materials. This dissertation applies a variety of computational techniques to …


A Remote Sensing And Machine Learning-Based Approach To Forecast The Onset Of Harmful Algal Bloom (Red Tides), Moein Izadi Apr 2022

A Remote Sensing And Machine Learning-Based Approach To Forecast The Onset Of Harmful Algal Bloom (Red Tides), Moein Izadi

Dissertations

In the last few decades, harmful algal blooms (HABs, also known as “red tides”) have become one of the most detrimental natural phenomena all around the world especially in Florida’s coastal areas due to local environmental factors and global warming in a larger scale. Karenia brevis produces toxins that have harmful effects on humans, fisheries, and ecosystems. In this study, I developed and compared the efficiency of state-of-the-art machine learning models (e.g., XGBoost, Random Forest, and Support Vector Machine) in predicting the occurrence of HABs. In the proposed models, the K. brevis abundance is used as the target, and 10 …


Using Landsat-Based Phenology Metrics, Terrain Variables, And Machine Learning For Mapping And Probabilistic Prediction Of Forest Community Types In West Virginia, Faith M. Hartley Jan 2022

Using Landsat-Based Phenology Metrics, Terrain Variables, And Machine Learning For Mapping And Probabilistic Prediction Of Forest Community Types In West Virginia, Faith M. Hartley

Graduate Theses, Dissertations, and Problem Reports

This study investigates the mapping of forest community types for the entire state of West Virginia, USA using Global Land Analysis and Discovery (GLAD) Phenology Metrics analysis ready data (ARD) derived from the Landsat time series and digital terrain variables derived from a digital terrain model (DTM). Both classifications and probabilistic predictions were made using random forest (RF) machine learning (ML) and training data derived from ground plots provided by the West Virginia Natural Heritage Program (WVNHP). The primary goal of this study is to explore the use of globally consistent ARD data for operational forest type mapping over a …


Fine Scale Mapping Of Laurentian Mixed Forest Natural Habitat Communities Using Multispectral Naip And Uav Datasets Combined With Machine Learning Methods, Parth P. Bhatt Jan 2022

Fine Scale Mapping Of Laurentian Mixed Forest Natural Habitat Communities Using Multispectral Naip And Uav Datasets Combined With Machine Learning Methods, Parth P. Bhatt

Dissertations, Master's Theses and Master's Reports

Natural habitat communities are an important element of any forest ecosystem. Mapping and monitoring Laurentian Mixed Forest natural communities using high spatial resolution imagery is vital for management and conservation purposes. This study developed integrated spatial, spectral and Machine Learning (ML) approaches for mapping complex vegetation communities. The study utilized ultra-high and high spatial resolution National Agriculture Imagery Program (NAIP) and Unmanned Aerial Vehicle (UAV) datasets, and Digital Elevation Model (DEM). Complex natural vegetation community habitats in the Laurentian Mixed Forest of the Upper Midwest. A detailed workflow is presented to effectively process UAV imageries in a dense forest environment …


Assessing Machine Learning Utility In Predicting Hydrologic And Nitrate Dynamics In Karst Agroecosystems, Timothy Mcgill Jan 2022

Assessing Machine Learning Utility In Predicting Hydrologic And Nitrate Dynamics In Karst Agroecosystems, Timothy Mcgill

Theses and Dissertations--Biosystems and Agricultural Engineering

Seasonal hypoxia in the Gulf of Mexico and harmful algal blooms experienced in many inland freshwater bodies is partially driven due to excessive nitrogen loading seen from agricultural watersheds. Within the Mississippi/Atchafalaya River Basin, many areas are underlain with karst features, and efforts to reduce nitrogen contributions from these areas have had varying success, due to lacking a complete understanding of nutrient dynamics in karst agricultural systems. To improve the understanding of nitrogen cycling in these systems, 35 months of high resolution in situ water quality and atmospheric data were collected and fed into a two-hidden layer extreme learning machine …


A Non-Deterministic Deep Learning Based Surrogate For Ice Sheet Modeling, Hannah Jordan Jan 2022

A Non-Deterministic Deep Learning Based Surrogate For Ice Sheet Modeling, Hannah Jordan

Graduate Student Theses, Dissertations, & Professional Papers

Surrogate modeling is a new and expanding field in the world of deep learning, providing a computationally inexpensive way to approximate results from computationally demanding high-fidelity simulations. Ice sheet modeling is one of these computationally expensive models, the model used in this study currently requires between 10 and 20 minutes to complete one simulation. While this process is adequate for certain applications, the ability to use sampling approaches to perform statistical inference becomes infeasible. This issue can be overcome by using a surrogate model to approximate the ice sheet model, bringing the time to produce output down to a tenth …