Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 61 - 90 of 95

Full-Text Articles in Physical Sciences and Mathematics

Kinetic Effects In 2d And 3d Quantum Dots: Comparison Between High And Low Electron Correlation Regimes, Marlina Slamet, Viraht Sahni Aug 2018

Kinetic Effects In 2d And 3d Quantum Dots: Comparison Between High And Low Electron Correlation Regimes, Marlina Slamet, Viraht Sahni

Publications and Research

Kinetic related ground state properties of a two-electron 2D quantum dot in a magnetic field and a 3D quantum dot (Hooke's atom) are compared in the Wigner high (HEC) and low (LEC) electron correlation regimes. The HEC regime corresponds to low densities sufficient for the creation of a Wigner molecule. The LEC regime densities are similar to those of natural atoms and molecules. The results are determined employing exact closed-form analytical solutions of the Schrödinger-Pauli and Schrödinger equations, respectively. The properties studied are the local and nonlocal quantal sources of the density and the single particle density matrix; the kinetic …


Optimization Of Cuinxga1-Xse2 Solar Cells With Post Selenization, Zehra Cevher May 2018

Optimization Of Cuinxga1-Xse2 Solar Cells With Post Selenization, Zehra Cevher

Dissertations, Theses, and Capstone Projects

The chalcopyrite semiconductor CuInxGa1-xSe2 is considered as the most promising material for high efficiency thin film solar cells due to its exceptional radiation stability, tunable direct bandgap, high light absorption coefficient and low cost preparation methods. In this thesis, we present the systematic investigation of the deposition conditions to optimize the CuInxGa1-xSe2 device performance using the two-step deposition method. Further, we utilized nonlinear optical methods to investigate the deposition parameters to optimize the bulk and interface properties of photovoltaic devices.

First, we investigated the deposition parameters to optimize the structural, …


Standard And Anomalous Wave Transport Inside Random Media, Xujun Ma May 2018

Standard And Anomalous Wave Transport Inside Random Media, Xujun Ma

Dissertations, Theses, and Capstone Projects

This thesis is a study of wave transport inside random media using random matrix theory. Anderson localization plays a central role in wave transport in random media. As a consequence of destructive interference in multiple scattering, the wave function decays exponentially inside random systems. Anderson localization is a wave effect that applies to both classical waves and quantum waves. Random matrix theory has been successfully applied to study the statistical properties of transport and localization of waves. Particularly, the solution of the Dorokhov-Mello-Pereyra-Kumar (DMPK) equation gives the distribution of transmission.

For wave transport in standard one dimensional random systems in …


Dissipation Effects In Schrödinger And Quantal Density Functional Theories Of Electrons In An Electromagnetic Field, Xiao-Yin Pan, Viraht Sahni Mar 2018

Dissipation Effects In Schrödinger And Quantal Density Functional Theories Of Electrons In An Electromagnetic Field, Xiao-Yin Pan, Viraht Sahni

Publications and Research

Dissipative effects arise in an electronic system when it interacts with a time-dependent environment. Here, the Schrödinger theory of electrons in an electromagnetic field including dissipative effects is described from a new perspective. Dissipation is accounted for via the effective Hamiltonian approach in which the electron mass is time-dependent. The perspective is that of the individual electron: the corresponding equation of motion for the electron or time-dependent differential virial theorem—the ‘Quantal Newtonian’ second law—is derived. According to the law, each electron experiences an external field comprised of a binding electric field, the Lorentz field, and the electromagnetic field. In addition, …


Effects Of Structural And Electronic Disorder In Topological Insulator Sb2te3 Thin Films, Inna Korzhovska Feb 2018

Effects Of Structural And Electronic Disorder In Topological Insulator Sb2te3 Thin Films, Inna Korzhovska

Dissertations, Theses, and Capstone Projects

Topological quantum matter is a unique and potentially transformative protectorate against disorder-induced backscattering. The ultimate disorder limits to the topological state, however, are still not known - understanding these limits is critical to potential applications in the fields of spintronics and information processing. In topological insulators spin-orbit interaction and time-reversal-symmetry invariance guarantees - at least up to a certain disorder strength - that charge transport through 2D gapless Dirac surface states is robust against backscattering by non-magnetic disorder. Strong disorder may destroy topological protection and gap out Dirac surface states, although recent theories predict that under severe electronic disorder a …


Dynamic Self-Assembly And Self-Organized Transport Of Magnetic Micro-Swimmers, Gašper Kokot, German Kolmakov V, Igor S. Aranson, Alexey Snezhko Nov 2017

Dynamic Self-Assembly And Self-Organized Transport Of Magnetic Micro-Swimmers, Gašper Kokot, German Kolmakov V, Igor S. Aranson, Alexey Snezhko

Publications and Research

We demonstrate experimentally and in computer simulations that magnetic microfloaters can self-organize into various functional structures while energized by an external alternating (ac) magnetic field. The structures exhibit self-propelled motion and an ability to carry a cargo along a pre-defined path. The morphology of the self-assembled swimmers is controlled by the frequency and amplitude of the magnetic field.


Detecting Majorana Fermion Induced Crossed Andreev Reflection, Lei Fang Sep 2017

Detecting Majorana Fermion Induced Crossed Andreev Reflection, Lei Fang

Dissertations, Theses, and Capstone Projects

This dissertation is devoted to a study of detecting the Majorana fermion induced crossed Andreev reflection.

Majorana fermions are particles that constitute their own antiparticles. In condensed matter physics, Majorana fermions are zero energy modes that reside at edges or around vortices of topological superconductors. The special properties of Majorana fermions result in their potential to conduct topological quantum computation, which has been attracting a lot of current research. One of the most important issues in the field of the Majorana fermion physics now is to detect their existence in realistic systems. Among many classes of detecting methods, a transport …


Control Of Light-Matter Interaction In 2d Semiconductors, Zheng Sun Sep 2017

Control Of Light-Matter Interaction In 2d Semiconductors, Zheng Sun

Dissertations, Theses, and Capstone Projects

In this thesis we discuss the control of light matter interaction in low dimensional nanostructure cavity light confining structures. These structures have controllable dispersion properties through design which can be exploited to modify the interaction of light and matter. We will discuss two different types of light confining microcavities: a dielectric cavity and a metal cavity. The specific design of the cavity gives rise to the confinement of the electric field in the center where the nano-materials are placed. In this work, the main material was on the new class of two- dimensional semiconductors of transition metal dichalcogenides (TMDs). Due …


Wave Propagation Inside Random Media, Xiaojun Cheng Jun 2017

Wave Propagation Inside Random Media, Xiaojun Cheng

Dissertations, Theses, and Capstone Projects

This thesis presents results of studies of wave scattering within and transmission through random and periodic systems. The main focus is on energy profiles inside quasi-1D and 1D random media.

The connection between transport and the states of the medium is manifested in the equivalence of the dimensionless conductance, g, and the Thouless number which is the ratio of the average linewidth and spacing of energy levels. This equivalence and theories regarding the energy profiles inside random media are based on the assumption that LDOS is uniform throughout the samples. We have conducted microwave measurements of the longitudinal energy profiles …


The Effects Of Tilted Magnetic Fields On Quantum Transport In 2d Electron Systems, William A. Mayer Feb 2017

The Effects Of Tilted Magnetic Fields On Quantum Transport In 2d Electron Systems, William A. Mayer

Dissertations, Theses, and Capstone Projects

There exists a myriad of quantum transport phenomena in highly mobile 2D electrons placed in a perpendicular magnetic field. We study the effects of tilted magnetic field on these transport properties to understand how the energy spectrum evolves. We observe significant changes of the electron transport in quantum wells of varying widths with high electron densities at high filling factors. In narrow quantum wells the spin splitting of Landau levels due to Zeeman effect is found to be the dominant mechanism reducing Quantum Positive Magnetoresistance. In wider quantum wells with two populated subbands Magnetointersubband oscillations appear to exhibit effects from …


Schrödinger Theory Of Electrons In Electromagnetic Fields: New Perspectives, Viraht Sahni, Xiao-Yin Pan Jan 2017

Schrödinger Theory Of Electrons In Electromagnetic Fields: New Perspectives, Viraht Sahni, Xiao-Yin Pan

Publications and Research

The Schrödinger theory of electrons in an external electromagnetic field is described from the new perspective of the individual electron. The perspective is arrived at via the time-dependent "Quantal Newtonian" law (or differential virial theorem). (The time-independent law, a special case, provides a similar description of stationary-state theory). These laws are in terms of "classical" fields whose sources are quantal expectations of Hermitian operators taken with respect to the wave function. The laws reveal the following physics: (a) in addition to the external field, each electron experiences an internal field whose components are representative of a specific property of the …


Electron Correlations In An Excited State Of A Quantum Dot In A Uniform Magnetic Field, Marlina Slamet, Viraht Sahni Jan 2017

Electron Correlations In An Excited State Of A Quantum Dot In A Uniform Magnetic Field, Marlina Slamet, Viraht Sahni

Publications and Research

Electron correlations in a two-electron two-dimensional ‘artificial atom’ or quantum dot (with harmonic confining potential) in the presence of a uniform magnetic field in an excited singlet state are studied via quantal density functional theory (QDFT). QDFT allows for the separation of the electron correlations due to the Pauli exclusion principle and Coulomb repulsion, as well as the determination of the contribution of these correlations to the kinetic energy. The QDFT mapping is from the excited state of the quantum dot to one of noninteracting fermions in their ground state possessing the same basic variables of the density and physical …


Generalization Of The Schrödinger Theory Of Electrons, Viraht Sahni Jan 2017

Generalization Of The Schrödinger Theory Of Electrons, Viraht Sahni

Publications and Research

The Schrödinger theory for a system of electrons in the presence of both a static and time-dependent electromagnetic field is generalized so as to exhibit the intrinsic self-consistent nature of the corresponding Schrödinger equations. This is accomplished by proving that the Hamiltonian in the stationary-state and time-dependent cases {\hat{H}; \hat{H}(t)} are exactly known functionals of the corresponding wave functions {\Psi; \Psi(t)}, i.e. \hat{H} = \hat{H}[\Psi] and \hat{H}(t) = \hat{H}[\Psi(t)]. Thus, the Schrödinger equations may be written as \hat{H}[\Psi]\Psi = E[\Psi]\Psi and \hat{H}[\Psi(t)]\Psi(t) = i\partial\Psi(t)/\partial t. As a consequence the eiegenfunctions and energy eigenvalues {\Psi; E} of the stationary-state equation, and …


Properties Of The Schrödinger Theory Of Electrons In Electromagnetic Fields, Viraht Sahni, Xiao-Yin Pan Nov 2016

Properties Of The Schrödinger Theory Of Electrons In Electromagnetic Fields, Viraht Sahni, Xiao-Yin Pan

Publications and Research

The Schrödinger theory of electrons in an external electromagnetic field can be described from the perspective of the individual electron via the ‘Quantal Newtonian’ laws (or differential virial theorems). These laws are in terms of ‘classical’ fields whose sources are quantal expectations of Hermitian operators taken with respect to the wave function. The laws reveal the following physics: (a) In addition to the external field, each electron experiences an internal field whose components are representative of a specific property of the system such as the correlations due to the Pauli exclusion principle and Coulomb repulsion, the electron density, kinetic effects, …


Tuning Topological Surface States By Charge Transfer, Zhiyi Chen Sep 2016

Tuning Topological Surface States By Charge Transfer, Zhiyi Chen

Dissertations, Theses, and Capstone Projects

Three-dimensional (3D) topological insulators (TIs), Bi2Se3, Bi2Te3, Sb2Te3, are a class of materials that has non-trivial bulk band structure and metallic surface states. Access to charge transport through Dirac surface states in TIs can be challenging due to their intermixing with bulk states or non-topological two-dimensional electron gas quantum well states caused by bending of electronic bands near the surface. The band bending arises via charge transfer from surface adatoms or interfaces and, therefore, the choice of layers abutting topological surfaces is critical. Surfaces of these 3D TIs …


Electron Correlations In Local Effective Potential Theory, Viraht Sahni, Xiao-Yin Pan, Tao Yang Aug 2016

Electron Correlations In Local Effective Potential Theory, Viraht Sahni, Xiao-Yin Pan, Tao Yang

Publications and Research

Local effective potential theory, both stationary-state and time-dependent, constitutes the mapping from a system of electrons in an external field to one of the noninteracting fermions possessing the same basic variable such as the density, thereby enabling the determination of the energy and other properties of the electronic system. This paper is a description via Quantal Density Functional Theory (QDFT) of the electron correlations that must be accounted for in such a mapping. It is proved through QDFT that independent of the form of external field, (a) it is possible to map to a model system possessing all the basic …


Classical Transport In Disordered Systems, Antonios Papaioannou Jun 2016

Classical Transport In Disordered Systems, Antonios Papaioannou

Dissertations, Theses, and Capstone Projects

This thesis reports on the manifestation of structural disorder on molecular transport and it consists of two parts. Part I discusses the relations between classical transport and the underlying structural complexity of the system. Both types of molecular diffusion, namely Gaussian and non-Gaussian are presented and the relevant time regimes are discussed. In addition the concept of structural universality is introduced and connected with the diffusion metrics. One of the most robust techniques for measuring molecular mean square displacements is magnetic resonance. This method requires encoding and subsequently reading out after an experimentally controlled time, a phase ϕ to the …


Properties Of Type-Ii Znte/Znse Submonolayer Quantum Dots Studied Via Excitonic Aharonov-Bohm Effect And Polarized Optical Spectroscopy, Haojie Ji Feb 2016

Properties Of Type-Ii Znte/Znse Submonolayer Quantum Dots Studied Via Excitonic Aharonov-Bohm Effect And Polarized Optical Spectroscopy, Haojie Ji

Dissertations, Theses, and Capstone Projects

In this thesis I develop understanding of the fundamental physical and material properties of type-II ZnTe/ZnSe submonolayer quantum dots (QDs), grown via combination of molecular beam epitaxy (MBE) and migration enhanced epitaxy (MEE). I use magneto-photoluminescence, including excitonic Aharonov-Bohm (AB) effect and polarized optical spectroscopy as the primary tools in this work.

I present previous studies as well as the background of optical and magneto-optical processes in semiconductor nanostructures and introduce the experimental methods in Chapters 1 - 3.

In Chapter 4 I focus on the excitonic AB effect in the type-II QDs. I develop a lateral tightly-bound exciton model …


Ultrafast Spectroscopy And Energy Transfer In An Organic/Inorganic Composite Of Zinc Oxide And Graphite Oxide, Jeff A. Secor Feb 2016

Ultrafast Spectroscopy And Energy Transfer In An Organic/Inorganic Composite Of Zinc Oxide And Graphite Oxide, Jeff A. Secor

Dissertations, Theses, and Capstone Projects

The energy transfers and nature of defect levels of an organic/inorganic composite of Zinc Oxide and Graphite are studied with multidimensional spectroscopy. The edge and surface states of each composite are uncovered using excitation emission experiments showing which defect states are mediating the energy transfer from the metal oxide to the graphite oxide. Multidimensional time resolved spectroscopy further describes the effect of the carbon phase on the energy transfer pathways in the material.


Hohenberg-Kohn Theorems In Electrostatic And Uniform Magnetostatic Fields, Xiao-Yin Pan, Viraht Sahni Nov 2015

Hohenberg-Kohn Theorems In Electrostatic And Uniform Magnetostatic Fields, Xiao-Yin Pan, Viraht Sahni

Publications and Research

The Hohenberg-Kohn (HK) theorems of bijectivity between the external scalar potential and the gauge invariant nondegenerate ground state density, and the consequent Euler variational principle for the density, are proved for arbitrary electrostatic field and the constraint of fixed electron number. The HK theorems are generalized for spinless electrons to the added presence of an external uniform magnetostatic field by introducing the new constraint of fixed canonical orbital angular momentum. Thereby, a bijective relationship between the external scalar and vector potentials, and the gauge invariant nondegenerate ground state density and physical current density, is proved. A corresponding Euler variational principle …


Hohenberg-Kohn Theorems In Electrostatic And Uniform Magnetostatic Fields, Xiao-Yin Pan, Viraht Sahni Oct 2015

Hohenberg-Kohn Theorems In Electrostatic And Uniform Magnetostatic Fields, Xiao-Yin Pan, Viraht Sahni

Publications and Research

The Hohenberg-Kohn (HK) theorems of bijectivity between the external scalar potential and the gauge invariant nondegenerate ground state density, and the consequent Euler variational principle for the density, are proved for arbitrary electrostatic field and the constraint of fixed electron number. The HK theorems are generalized for spinless electrons to the added presence of an external uniform magnetostatic field by introducing the new constraint of fixed canonical orbital angular momentum. Thereby a bijective relationship between the external scalar and vector potentials, and the gauge invariant nondegenerate ground state density and physical current density, is proved. A corresponding Euler variational principle …


Hybridized Criticality And Elementary Excitations In Lihof4, Haifu Ma Sep 2015

Hybridized Criticality And Elementary Excitations In Lihof4, Haifu Ma

Dissertations, Theses, and Capstone Projects

In this dissertation, I study the magnetic properties of LiHoF4. Quantum criticality in rare earth ferromagnet LiHoF4 is complicated by the presence of strong crystal field and hyperfine interactions resulting, e.g., in incomplete mode softening reported by Rønnow et al. We construct a systematic framework for treating elementary excitations in this material across the phase diagram. These excitations interpolate between purely electronic, nuclear and lattice modes and exhibit two-types of quantum critical softening, both complete (as anticipated by elementary treatments, see e.g. Sachdev) but also incomplete, in close correspondence with nuclear scattering results.


A Static And Dynamic Investigation Of Quantum Nonlinear Transport In Highly Dense And Mobile 2d Electron Systems, Scott A. Dietrich May 2015

A Static And Dynamic Investigation Of Quantum Nonlinear Transport In Highly Dense And Mobile 2d Electron Systems, Scott A. Dietrich

Dissertations, Theses, and Capstone Projects

Heterostructures made of semiconductor materials may be one of most versatile environments for the study of the physics of electron transport in two dimensions. These systems are highly customizable and demonstrate a wide range of interesting physical phenomena. In response to both microwave radiation and DC excitations, strongly nonlinear transport that gives rise to non-equilibrium electron states has been reported and investigated. We have studied GaAs quantum wells with a high density of high mobility two-dimensional electrons placed in a quantizing magnetic field. This study presents the observation of several nonlinear transport mechanisms produced by the quantum nature of these …


C-Metrics In Gauged Stu Supergravity And Beyond, H. Lu, Justin F. Vázquez-Poritz Dec 2014

C-Metrics In Gauged Stu Supergravity And Beyond, H. Lu, Justin F. Vázquez-Poritz

Publications and Research

We construct charged generalizations of the dilaton C-metric in various fourdimensional theories, including STU gauged supergravity as well as a one-parameter family of Einstein-Maxwell-dilaton theories whose scalar potential can be expressed in terms of a superpotential. In addition, we present time-dependent generalizations of the dilaton C-metric and dilaton Ernst solutions, for which the time evolution is driven by the dilaton. These C-metric solutions provide holographic descriptions of a strongly-coupled three-dimensional field theory on the background of a black hole, a gravitational soliton, and a black hole undergoing time evolution.


Transport And Optical Properties Of Low-Dimensional Complex Systems, Andrii Iurov Oct 2014

Transport And Optical Properties Of Low-Dimensional Complex Systems, Andrii Iurov

Dissertations, Theses, and Capstone Projects

Over the last five years of my research work, I, my research was mainly concerned with certain crucial tunneling, transport and optical properties of novel low-dimensional graphitic and carbon-based materials as well as topological insulators. Both single-electron and many-body problems were addressed. We investigated the Dirac electrons transmission through a potential barrier in the presence of circularly polarized light. An anomalous photon-assisted enhanced transmission is predicted and explained in a comparison with the well-known Klein paradox. It is demonstrated that the perfect transmission for nearly-head-on collision in an infinite graphene is suppressed in gapped dressed states of electrons, which is …


Spontaneous Time-Reversal Symmetry Breaking In Two Dimensional Electronic Systems, Wei Liu Oct 2014

Spontaneous Time-Reversal Symmetry Breaking In Two Dimensional Electronic Systems, Wei Liu

Dissertations, Theses, and Capstone Projects

The discovery of high temperature superconductivity inspired a number of novel proposals, one of which, put forward by C.M.Varma, involves the breaking of time-reversal symmetry to explain the physics of the underdoped pseudogap phase. It was proposed that time-reversal symmetry is spontaneously broken as a result of strong repulsion between the Cu-O electrons to form loop-currents in the system.

In this work, we developed a general theory to study the quantum phase transitions in the 2 dimensional strongly interacting electronic systems in which time-reversal symmetry is spontaneously broken in the ground state. We first applied the theory of magnetic groups …


Wigner High-Electron-Correlation Regime Of Nonuniform Density Systems: A Quantal-Density-Functional-Theory Study, Douglas Achan, Lou Massa, Viraht Sahni Aug 2014

Wigner High-Electron-Correlation Regime Of Nonuniform Density Systems: A Quantal-Density-Functional-Theory Study, Douglas Achan, Lou Massa, Viraht Sahni

Publications and Research

The Wigner regime of a system of electrons in an external field is characterized by a low electron density and a high electron-interaction energy relative to the kinetic energy. The low-correlation regime is in turn described by a high electron density and an electron-interaction energy smaller than the kinetic energy. The Wigner regime of a nonuniform-electron-density system is investigated via quantal density functional theory (QDFT). Within QDFT, the contributions of electron correlations due to the Pauli exclusion principle, Coulomb repulsion, and correlation-kinetic effects are separately delineated and explicitly defined. The nonuniform-electron-density system studied is that of the Hooke's atom in …


Dynamics And Manipulation Of Nanomagnets, Liufei Cai Jun 2014

Dynamics And Manipulation Of Nanomagnets, Liufei Cai

Dissertations, Theses, and Capstone Projects

This thesis presents my work on the spin dynamics of nanomagnets and investigates the possibility of manipulating nanomagnets by various means. Most of the work has been published\cite{LC-PRB2010, LC-PRB2012, LC-PRB2013, LC-EPL2014}. Some has been submitted for publication\cite{LC-arxiv2014}. The structure of this thesis is as follows.

In Chapter 1, I present the theory of manipulation of a nanomagnet by rotating ac fields whose frequency is time dependent. Theory has been developed that maps the problem onto Landau-Zener problem. For the linear frequency sweep the switching phase diagrams are obtained on the amplitude of the ac field and the frequency sweep rate. …


Wave Function For Harmonically Confined Electrons In Time-Dependent Electric And Magnetostatic Fields, Hong-Ming Zhu, Jin-Wang Chen, Xiao-Yin Pan, Viraht Sahni Jan 2014

Wave Function For Harmonically Confined Electrons In Time-Dependent Electric And Magnetostatic Fields, Hong-Ming Zhu, Jin-Wang Chen, Xiao-Yin Pan, Viraht Sahni

Publications and Research

We derive via the interaction “representation” the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field—the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement – the uniform electron gas – the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKTwave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide …


Wave Function For Time-Dependent Harmonically Confined Electrons In A Time-Dependent Electric Field, Yu-Qi Li, Xiao-Yin Pan, Viraht Sahni Sep 2013

Wave Function For Time-Dependent Harmonically Confined Electrons In A Time-Dependent Electric Field, Yu-Qi Li, Xiao-Yin Pan, Viraht Sahni

Publications and Research

The many-body wave function of a system of interacting particles confined by a time-dependent harmonic potential and perturbed by a time-dependent spatially homogeneous electric field is derived via the Feynman path-integral method. The wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the Harmonic Potential Theorem wave function for the case of the time-independent harmonic confining potential.