Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 37 of 37

Full-Text Articles in Physical Sciences and Mathematics

Neuro Control Of Nonlinear Discrete Time Systems With Deadzone And Input Constraints, Pingan He, Wenzhi Gao, Jagannathan Sarangapani Jan 2006

Neuro Control Of Nonlinear Discrete Time Systems With Deadzone And Input Constraints, Pingan He, Wenzhi Gao, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

A neural network (NN) controller in discrete time is designed to deliver a desired tracking performance for a class of uncertain nonlinear systems with unknown deadzones and magnitude constraints on the input. The NN controller consists of two NNs: the first NN for compensating the unknown deadzones; and the second NN for compensating the uncertain nonlinear system dynamics. The magnitude constraints on the input are modeled as saturation nonlinearities and they are dealt with in the Lyapunov-based controller design. The uniformly ultimate boundedness (UUB) of the closed-loop tracking errors and the neural network weights estimation errors is demonstrated via Lyapunov …


Window Query Processing With Proxy Cache, Gao Xing, John Sustersic, A. R. Hurson Jan 2006

Window Query Processing With Proxy Cache, Gao Xing, John Sustersic, A. R. Hurson

Computer Science Faculty Research & Creative Works

A location dependent query (LDQ) result set is valid only in a specific region called the validity region (VR). While limiting the validity of a particular result set to a given area, the VR may also be used in caching implementations to determine if cached results satisfy semantically equivalent queries. Existing LDQ caching schemes rely on the database servers to provide the VR at a cost of high computational overhead. Alternatively, a LDQ proxy cache, which approximates the VR can be employed, freeing the database servers from the high cost of calculating the VR. A LDQ proxy cache architecture is …


Practical Experiences In Using Model-Driven Engineering To Develop Trustworthy Computing Systems, Thomas Weigert, Frank Weil Jan 2006

Practical Experiences In Using Model-Driven Engineering To Develop Trustworthy Computing Systems, Thomas Weigert, Frank Weil

Computer Science Faculty Research & Creative Works

In this paper, we describe how Motorola has deployed model-driven engineering in product development, in particular for the development of trustworthy and highly reliable telecommunications systems, and outline the benefits obtained. Model-driven engineering has dramatically increased both the quality and the reliability of software developed in our organization, as well as the productivity of our software engineers. Our experience demonstrates that model-driven engineering significantly improves the development process for trustworthy computing systems.


A Hierarchical Secure Routing Protocol Against Black Hole Attacks In Sensor Networks, Jian Yin, Sanjay Kumar Madria Jan 2006

A Hierarchical Secure Routing Protocol Against Black Hole Attacks In Sensor Networks, Jian Yin, Sanjay Kumar Madria

Computer Science Faculty Research & Creative Works

A black hole attack is a severe attack that can be easily employed against routing in sensor networks. In a black hole attack, a malicious node spuriously announces a short route to the sink node (the destination) to attract additional traffic to the malicious node and then drops them. In this paper, we propose a hierarchical secure routing protocol for detecting and defending against black hole attacks. The proposed protocol uses only symmetric key cryptography to discover a safe route against black hole attacks. The comparison of the proposed protocol with two other existing approaches proves that the proposed scheme …


Energy And Communication Efficient Group Key Management Protocol For Hierarchical Sensor Networks, Biswajit Panja, Sanjay Kumar Madria, Bharat Bhargava Jan 2006

Energy And Communication Efficient Group Key Management Protocol For Hierarchical Sensor Networks, Biswajit Panja, Sanjay Kumar Madria, Bharat Bhargava

Computer Science Faculty Research & Creative Works

In this paper, we describe group key management protocosl for hierarchical sensor networks where instead of using pre-deployed keys, each sensor node generates a partial key dynamically using a function. The function takes partial keys of its children as input. The design of the protocol is motivated by the fact that traditional cryptographic techniques are impractical in sensor networks because of high energy and computational overheads. The group key management protocol supports the establishment of two types of group keys; one for the sensor nodes within a group, and the other in a group of cluster heads. The protocol handles …


Neural Network-Based Output Feedback Controller For Lean Operation Of Spark Ignition Engines, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier, Jonathan B. Vance, Pingan He Jan 2006

Neural Network-Based Output Feedback Controller For Lean Operation Of Spark Ignition Engines, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier, Jonathan B. Vance, Pingan He

Electrical and Computer Engineering Faculty Research & Creative Works

Spark ignition (SI) engines running at very lean conditions demonstrate significant nonlinear behavior by exhibiting cycle-to-cycle dispersion of heat release even though such operation can significantly reduce NOx emissions and improve fuel efficiency by as much as 5-10%. A suite of neural network (NN) controller without and with reinforcement learning employing output feedback has shown ability to reduce the nonlinear cyclic dispersion observed under lean operating conditions. The neural network controllers consists of three NN: a) A NN observer to estimate the states of the engine such as total fuel and air; b) a second NN for generating virtual input; …


Model Checking Control Communication Of A Facts Device, David Andrew Cape Jan 2006

Model Checking Control Communication Of A Facts Device, David Andrew Cape

Masters Theses

"This thesis concerns the design and verification of a real-time communication protocol for sensor data collection and processing between an embedded computer and a DSP. In such systems, a certain amount of data loss without recovery may be tolerated. The key issue is to design and verify the correctness in the presence of these lost data frames under real-time constraints. This thesis describes a temporal verification that if the end processes do not detect that too many frames are lost, defined by comparison of error counters against given threshold values, then there will be a bounded delay between transmission of …