Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 40 of 40

Full-Text Articles in Physical Sciences and Mathematics

Improved Modeling Of Midlatitude D-Region Ionospheric Absorption Of High Frequency Radio Signals During Solar X-Ray Flares, Evelyn A. Schumer Mar 2010

Improved Modeling Of Midlatitude D-Region Ionospheric Absorption Of High Frequency Radio Signals During Solar X-Ray Flares, Evelyn A. Schumer

Theses and Dissertations

The purpose of this research was to improve modeling of midlatitude D-region ionospheric absorption of high frequency radio signals during solar X-ray flares through analysis of HF propagation data obtained during the HF Investigation of D-region Ionospheric Variation Experiment (HIDIVE) and obtained at the Canadian Space Agency NORSTAR riometer in Pinawa, Manitoba, Canada and X-ray flux data, as reported by GOES satellites. The findings of the data analysis were then used to validate and suggest improvements for two existing HF absorption models, the operational Space Weather Prediction Center (SWPC) D-region Absorption model and the physical AbbyNormal model. Analysis of the …


Calculation Of Collisional Cross Sections For The ²P3/2 > ²P1/2 Transition In Alkali-Noble Gas Systems, Samuel D. Butler Mar 2010

Calculation Of Collisional Cross Sections For The ²P3/2 > ²P1/2 Transition In Alkali-Noble Gas Systems, Samuel D. Butler

Theses and Dissertations

Collisional cross sections were calculated as a function of energy for two coupled one dimensional, spherically symmetric potentials. The Split Operator Method was used to propagate an initial Moller state, chosen to be a Gaussian in the asymptotic limit, through a potential. The correlation between the wave packet and Moller final state was calculated at each time step. Using the Channel Packet Method, the correlation function was used to obtain scattering matrix elements. From scattering matrix elements for several different effective potential values and using the Method of Partial Waves, the collisional cross section is calculated for the transition from …


Three Dimensional Positron Annihilation Momentum Measurement Technique (3dpamm) Applied To Measure Oxygen-Atom Defects In 6h Silicon Carbide, Christopher S. Williams Mar 2010

Three Dimensional Positron Annihilation Momentum Measurement Technique (3dpamm) Applied To Measure Oxygen-Atom Defects In 6h Silicon Carbide, Christopher S. Williams

Theses and Dissertations

A three-dimensional Positron Annihilation Spectroscopy System (3DPASS) capable to simultaneously measure three-dimensional electron-positron (e--e+) momentum densities measuring photons derived from e--e+ annihilation events was designed and characterized. 3DPASS simultaneously collects a single data set of correlated energies and positions for two coincident annihilation photons using solid-state double-sided strip detectors (DSSD). Positions of photons were determined using an interpolation method which measures a figure-of-merit proportional to the areas of transient charges induced on both charge collection strips directly adjacent to the charge collection strips interacting with the annihilation photons. The subpixel resolution was measured for both double-sided strip detectors (DSSD) and …


Experimental Validation Techniques For The Heleeos Off-Axis Laser Propagation Model, John D. Haiducek Mar 2010

Experimental Validation Techniques For The Heleeos Off-Axis Laser Propagation Model, John D. Haiducek

Theses and Dissertations

The High Energy Laser End-to-End Operational Simulation (HELEEOS) off-axis scattering algorithm is designed to predict the irradiance that will be detected at a given off-axis location due to atmospheric scattering of a high-energy laser. The HELEEOS system models the propagation of the laser through the atmosphere, accounting for such effects as turbulence, thermal blooming, and atmospheric absorption. The HELEEOS off-axis scattering algorithm uses the scattering phase functions of the Mie scattering models to predict the amount of radiation that will be scattered toward a particular observation location from each point along the beam path, and the total irradiance that will …


The Material Properties Of Cssnbr3 And Csbr:Sn-1% And Their Potential As Scintillator Detector Material, Neal B. Kleinschmidt Mar 2010

The Material Properties Of Cssnbr3 And Csbr:Sn-1% And Their Potential As Scintillator Detector Material, Neal B. Kleinschmidt

Theses and Dissertations

The search for superior nuclear radiation detection materials is ongoing. Current scintillator materials using Thallium doped Sodium Iodide or Cesium Iodide are the benchmarks for ease of use and quick identification of isotope species. This research aims to explore Cesium Bromide doped with 1% molar tin (CsBr:Sn-1%) and Cesium Tin Bromide (CsSnBr3) as candidate materials for a new scintillator. The techniques of Extended X-Ray Absorption Fine Structure (EXAFS), X-Ray Absorption Near Edge Structure (XANES) and Cathodoluminescence are used to determine the suit- ability of CsSnBr3 and CsBr:Sn-1% with Sn4+ as a potential scintillator materials and explore their …


In-Situ, Gate Bias Dependent Study Of Neutron Irradiation Effects On Algan/Gan Hfets, Janusz K. Mikina Mar 2010

In-Situ, Gate Bias Dependent Study Of Neutron Irradiation Effects On Algan/Gan Hfets, Janusz K. Mikina

Theses and Dissertations

AlGaN/GaN Heterostructure Field Effect Transistors (HFETs) have come under increased study in recent years due to their highly desirable material and electrical properties and survivability even during and after exposure to extreme temperature and radiation environments. In this study, unpassivated and SiN passivated Al0.27Ga0.73N/GaN HFETs were subjected to neutron radiation at 120 K. The primary focus of the research was the effects of neutron irradiation on drain current, gate leakage current, threshold voltage shift, gate-channel capacitance, and the effects of biasing the gate during irradiation. In-situ measurements were conducted on transistor current, gate-channel capacitance, and gate …


Time-Resolved Infrared Spectroscopy And Density Functional Theory Study Of Weak Interactions Of Metal Carbonyls And Organic Solvents, Carolyn Evans Sheffield Mar 2010

Time-Resolved Infrared Spectroscopy And Density Functional Theory Study Of Weak Interactions Of Metal Carbonyls And Organic Solvents, Carolyn Evans Sheffield

Theses and Dissertations

Pulsed laser flash photolysis of M(CO)6 (M = Cr, W) in cyclohexane with a small amount of benzene results in three sequential reactions. The first is the photodissociation of the parent to yield a M(CO)5:C6H12 complex, which takes place faster than the time resolution of our experiments. The second reaction is the replacement of the cyclohexane ligand with benzene to form a M(CO)5:C6H6 complex, in which benzene is coordinated to the metal via one side of the ring. This complex then falls apart in solution as M(CO)5 coordinates with a trace impurity in the solution that is likely water. Kinetic …


The Heat Capacity And Thermodynamic Properties Of The Iron Oxides And Their Relation To The Mineral Core Of The Iron Storage Protein Ferritin, Claine Lindsey Morton Snow Feb 2010

The Heat Capacity And Thermodynamic Properties Of The Iron Oxides And Their Relation To The Mineral Core Of The Iron Storage Protein Ferritin, Claine Lindsey Morton Snow

Theses and Dissertations

The iron oxides are a group of materials with geological, biological, and technological importance. A thermodynamic understanding of these materials is important because it provides information about their relative stabilities, chemical reactivity, and transformations. This study provides the heat capacity of a nanocrystalline magnetite (Fe3O4) sample, bulk hematite (α-Fe2O3), nanocrystalline hematite, akaganéite (β-FeOOH), and lepidocrocite (γ-FeOOH) at temperatures as low as 0.5 K. These measurements were fit to theoretical functions at temperatures lower than 15 K, and the respective thermophysical properties of these materials are discussed. Also the molar entropies of bulk hematite and hydrous nanocrystalline hematite as well as …


Modeling Hydrophobic Effects At Different Lengthscales, Jihang Wang Jan 2010

Modeling Hydrophobic Effects At Different Lengthscales, Jihang Wang

Theses and Dissertations

Understanding hydrophobic effects at different length scales is relevant to many complex and poorly understood everyday phenomena in materials science and biology. In this thesis, a variety of theory/computational methods in statistical physics and statistical mechanics are used to address three separated, but interconnected problems: (1) How solvation free energy scales with a partical size that is charged? This problem has never been attempted to solve before despite its immense importance in colloidal and protein solutions (J. Wang, D. Bratko, K. Leung and A. Luzar, Hydrophobic hydration at different length-scales: manipulating the crossover by charges, to be submitted to J. …


Contact Angle Of A Nano-Drop On A Heterogeneous Surface, John Ritchie Jan 2010

Contact Angle Of A Nano-Drop On A Heterogeneous Surface, John Ritchie

Theses and Dissertations

CONTACT ANGLE OF A NANO-DROP ON A HETEROGENEOUS SURFACE By John Andre Ritchie, Master of Science A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University Virginia Commonwealth University, 2010 Major Director: Dr. Alenka Luzar, Professor of Chemistry

We examine the relation between contact angle of a nanodrop of water and the location of surface-water interaction energy at the perimeter and beneath the drop. Young’s equations gives the relationship between surface tension, at the three phase solid liquid vapor interface, and contact angle on a homogeneous surface. Cassie and Baxter …