Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Development Of Novel Protein Digestion And Quantitation Methods For Mass Spectrometic Analysis, Yongling Ai Dec 2023

Development Of Novel Protein Digestion And Quantitation Methods For Mass Spectrometic Analysis, Yongling Ai

Dissertations

Proteins are the workhorses of biology, playing multifaceted roles in maintaining cellular function, signaling, and response to environmental cues. Understanding their abundance and dynamics is pivotal for unraveling the complexities of biological processes, which underpins the foundations of molecular and cellular biology. Accurate measurement of protein quantities provides insights into cellular homeostasis, facilitates the discovery of biomarkers, and sheds light on the molecular mechanisms of diseases, bridging the gap between the molecular intricacies of proteins and their functional consequences in health and disease. The evolution of protein quantitation methodologies, from classical colorimetric assays to sophisticated mass spectrometry-based approaches, has expanded …


New Methods For Stereoselective Glycosylation In Application To Significant Biomedical Targets, Melanie L. Shadrick Nov 2023

New Methods For Stereoselective Glycosylation In Application To Significant Biomedical Targets, Melanie L. Shadrick

Dissertations

Glycosyl halides have been utilized for glycosylation reactions since the early studies by Arthur Michael, nearing the end of the 19th century. Koenigs and Knorr then utilized silver salts to activate glycosyl bromides and chlorides to create synthetic glycosides. Many efforts to improve the outcome of reactions with glycosyl halides have emerged. The key emphasis has traditionally been placed on reaction rates, product yields, and stereocontrol. Recently, our lab reported that silver(I) oxide-mediated Koenigs-Knorr glycosylation reaction can be dramatically accelerated in the presence of catalytic acid additives. Methods to improve glycosylation was explored using mannosyl and glucosyl bromides. However, …


Binding Interactions Of Biologically Relevant Molecules Studied Using Surface-Modified And Nanostructured Surfaces, Palak Sondhi Nov 2023

Binding Interactions Of Biologically Relevant Molecules Studied Using Surface-Modified And Nanostructured Surfaces, Palak Sondhi

Dissertations

This research focuses on the field of surface nanobioscience, wherein different nanosurfaces that will be used as working electrodes in the electrochemical cell are manufactured and surface modified to understand the critical binding interactions between biologically significant molecules like proteins, carbohydrates, small drug molecules, and glycoproteins. This research is essential if we are to determine whether a synthetic molecule can serve as a therapeutic candidate or diagnose a disease in its early stages. In order to fully understand the binding interactions, the study begins with defining some of the fundamental concepts, principles, and analytical tools for biosensing.

Afterwards, we addressed …


Data-Driven 2d Materials Discovery For Next-Generation Electronics, Zeyu Zhang Aug 2023

Data-Driven 2d Materials Discovery For Next-Generation Electronics, Zeyu Zhang

Dissertations

The development of material discovery and design has lasted centuries in human history. After the concept of modern chemistry and material science was established, the strategy of material discovery relies on the experiments. Such a strategy becomes expensive and time-consuming with the increasing number of materials nowadays. Therefore, a novel strategy that is faster and more comprehensive is urgently needed. In this dissertation, an experiment-guided material discovery strategy is developed and explained using metal-organic frameworks (MOFs) as instances. The advent of 7r-stacked layered MOFs, which offer electrical conductivity on top of permanent porosity and high surface area, opened up new …


Computational And Experimental Investigation Of Elemental Sulfur And Polysulfide, Jyoti Sharma Aug 2023

Computational And Experimental Investigation Of Elemental Sulfur And Polysulfide, Jyoti Sharma

Dissertations

Petroleum processing results in the generation of significant quantities of elemental sulfur (S8), leading to a surplus of sulfur worldwide. Despite its abundance and low cost, the use of sulfur in value-added organic compound synthesis is limited due to its unpredictable and misunderstood reactivity. This dissertation aims to address this issue by tackling it from two angles. Firstly, by utilizing Density Functional Theory (DFT) calculations, the reactivity of sulfur in the presence of nucleophiles is studied. This facilitates the identification of organic polysulfide intermediates that can be generated under different conditions, as well as the corresponding reactivity for …


High Resolution Intracavity Laser Absorption Spectroscopy Of Transition Metal-Containing Diatomic Molecules, Kristin Bales Jul 2023

High Resolution Intracavity Laser Absorption Spectroscopy Of Transition Metal-Containing Diatomic Molecules, Kristin Bales

Dissertations

Three transition metal-containing diatomic molecules have been studied using intracavity laser spectroscopy. Many of the transitions were recorded using a Fourier-transform spectrometer for detection, allowing collection at Doppler-limited resolution for the gas phase molecules. Several vibrational bands in two electronic transition systems of tantalum fluoride (TaF) have been analyzed, and new molecular constants provided. Transitions involving six electronic states of tungsten sulfide (WS) have been analyzed, with new and updated constants provided, including a deperturbation analysis of three vibrational bands in two of the states. Finally, a fresh perspective on two electronic states of tungsten oxide (WO) included a deperturbation …


Synthesis, Characterization, And Photocatalytic Activity Of Photoactive Mofs And M-Hof Under Simulated Visible Light Irradiation, Lamia Ali Siddig Jun 2023

Synthesis, Characterization, And Photocatalytic Activity Of Photoactive Mofs And M-Hof Under Simulated Visible Light Irradiation, Lamia Ali Siddig

Dissertations

The increasing global energy demand has resulted in environmental issues, leading to a shift in research towards sustainable and renewable energy sources. Among these, solar energy is the most abundant natural resource available. One of the most profitable ways to utilize sunlight is through chemical transformation using photocatalysts. In this regard, we reported the synthesis of different stable porous materials, such as metal-organic frameworks (MOFs) and metal hydrogen-bonded organic frameworks (M-HOFs). The MOF photocatalysts are bismuth-gallate (Bi-gallate), a mixed ligand manganese-based MOF (MnII3(tp)6/2(bpy)2. (dmf)) and a new hexagonal layer manganese MOF compound named …


V-Shaped Temperature Dependences And Pressure Dependence Of Elementary Reactions Of Hydroxyl Radicals With Several Organophosphorus Compounds, Xiaokai Zhang May 2023

V-Shaped Temperature Dependences And Pressure Dependence Of Elementary Reactions Of Hydroxyl Radicals With Several Organophosphorus Compounds, Xiaokai Zhang

Dissertations

Organophosphorus compounds have brought increasing attention since they are widely used as flame-retardants, which can take effect in combustion via reactions with reactive radicals. These reactions are influenced by variables such as temperature and pressure, resulting in a temperature and pressure dependent rate constant. Studying this reaction kinetics has great importance in both combustion reaction and atmospheric environment.

This study is focused on kinetics of several elementary reactions of combustion importance. The kinetics of hydroxyl radicals were studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 295 - 837 K temperature range and the 1 - …


Development Of Innovative Multi-Drug Approaches To Counteract Illicit Drug Abuse In The Uae Population, Manal Ali Alhefeiti Apr 2023

Development Of Innovative Multi-Drug Approaches To Counteract Illicit Drug Abuse In The Uae Population, Manal Ali Alhefeiti

Dissertations

The abuse of addictive substances is on the rise in the United Arab Emirates (UAE) population. Consequently, the UAE government spends about Dhs 5.5 billion annually on the rehabilitation of drug addicts. Blood, urine, and hair tests can reveal signs of sporadic or chronic drug use. Given the list of banned chemicals in the UAE, our main objective in this work was to develop a novel analytical method to identify and measure banned substances, especially prescription and over-the-counter drugs in the UAE. We developed and validated a rapid, sensitive and reliable liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) approach for the targeted …


Method Development For The Quantification Of Heavy Metals In Biological Matrices And Its Application To Clinical And Environmental Samples, Michelle Catherine Gende Jan 2023

Method Development For The Quantification Of Heavy Metals In Biological Matrices And Its Application To Clinical And Environmental Samples, Michelle Catherine Gende

Dissertations

A three-fold approach was taken to develop a method for the detection of heavy metals in different matrices and had to be performed sequentially. The first was to develop a method capable of quantifying lead in complex matrices by graphite furnace atomic absorption (GFAA). The developed method needed to meet specific analytical requirements, namely, to be robust, sensitive, and accurate. Initially, four different sample preparation methods were explored for the quantification of lead using Escherichia coli (E. coli) as a sample matrix. The sample preparation procedures attempted were acidic dilution, matrix modification, conventional heating digestion, and microwave assisted acid digestion …