Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

In Silico Apc/C Substrate Discovery Reveals Cell Cycle-Dependent Degradation Of Uhrf1 And Other Chromatin Regulators, Jennifer L. Franks, Raquel C. Martinez-Chacin, Xianxi Wang, Rochelle L. Tiedemann, Thomas Bonacci, Rajarshi Choudhury, Derek L. Bolhuis, Taylor P. Enrico, Ryan D. Mouery, Jeffrey S. Damrauer, Feng Yan, Joseph S. Harrison, M. Ben Major, Katherine A. Hoadley, Aussie Suzuki, Scott B. Rothbart, Nicholas G. Brown, Michael J. Emanuele Dec 2020

In Silico Apc/C Substrate Discovery Reveals Cell Cycle-Dependent Degradation Of Uhrf1 And Other Chromatin Regulators, Jennifer L. Franks, Raquel C. Martinez-Chacin, Xianxi Wang, Rochelle L. Tiedemann, Thomas Bonacci, Rajarshi Choudhury, Derek L. Bolhuis, Taylor P. Enrico, Ryan D. Mouery, Jeffrey S. Damrauer, Feng Yan, Joseph S. Harrison, M. Ben Major, Katherine A. Hoadley, Aussie Suzuki, Scott B. Rothbart, Nicholas G. Brown, Michael J. Emanuele

College of the Pacific Faculty Articles

The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and critical regulator of cell cycle progression. Despite its vital role, it has remained challenging to globally map APC/C substrates. By combining orthogonal features of known substrates, we predicted APC/C substrates in silico. This analysis identified many known substrates and suggested numerous candidates. Unexpectedly, chromatin regulatory proteins are enriched among putative substrates, and we show experimentally that several chromatin proteins bind APC/C, oscillate during the cell cycle, and are degraded following APC/C activation, consistent with being direct APC/C substrates. Additional analysis revealed detailed mechanisms of ubiquitylation for UHRF1, a key chromatin …


Optical Properties And Composition Of Viscous Organic Particles Found In The Southern Great Plains, Matthew Fraund, Daniel Bonanno, Swarup China, Don Q. Pham, Daniel Veghte, Johannes Weis, Gourihar Kulkarni, Ken Teske, Mary K. Gilles, Alexander Laskin, Ryan C. Moffet Oct 2020

Optical Properties And Composition Of Viscous Organic Particles Found In The Southern Great Plains, Matthew Fraund, Daniel Bonanno, Swarup China, Don Q. Pham, Daniel Veghte, Johannes Weis, Gourihar Kulkarni, Ken Teske, Mary K. Gilles, Alexander Laskin, Ryan C. Moffet

Department of Chemistry Student Articles

Atmospheric high-viscosity organic particles (HVOPs) were observed in samples of ambient aerosols collected in April and May 2016 in the Southern Great Plains of the United States. These particles were apportioned as either airborne soil organic particles (ASOPs) or tar balls (TBs) from biomass burning based on spetro-microscopic imaging and assessments of meteorological records of smoke and precipitation data. Regardless of their apportionment, the number fractions of HVOPs were positively correlated (R2=0.85) with increased values of absorption Ångström exponent (AAE) measured in situ for ambient aerosol at the site. Extending this correlation to 100 % HVOPs yields an …


Kras Ubiquitination At Lysine 104 Retains Exchange Factor Regulation By Dynamically Modulating The Conformation Of The Interface, Guowei Yin, Jerry Zhang, Vinay Nair, Vinh Truong, Angelo Chaia, Johnny Petela, Joseph S. Harrison, Alemayehu A. Gorfe, Sharon L. Campbell Sep 2020

Kras Ubiquitination At Lysine 104 Retains Exchange Factor Regulation By Dynamically Modulating The Conformation Of The Interface, Guowei Yin, Jerry Zhang, Vinay Nair, Vinh Truong, Angelo Chaia, Johnny Petela, Joseph S. Harrison, Alemayehu A. Gorfe, Sharon L. Campbell

College of the Pacific Faculty Articles

RAS proteins function as highly regulated molecular switches that control cellular growth. In addition to regulatory proteins, RAS undergoes a number of posttranslational modifications (PTMs) that regulate its activity. Lysine 104, a hot spot for multiple PTMs, is a highly conserved residue that forms key interactions that stabilize the RAS helix-2(H2)/helix-3(H3) interface. Mutation at 104 attenuates interaction with guanine nucleotide exchange factors (GEFs), whereas ubiquitination at lysine 104 retains GEF regulation. To elucidate how ubiquitination modulates RAS function, we generated monoubiquitinated KRAS at 104 using chemical biology approaches and conducted biochemical, NMR, and computational analyses. We find that ubiquitination promotes …