Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Physical Sciences and Mathematics

Design Of A Hyperstable Endocrine Acting Fibroblast Growth Factot, Sara Armstrong May 2023

Design Of A Hyperstable Endocrine Acting Fibroblast Growth Factot, Sara Armstrong

Chemistry & Biochemistry Undergraduate Honors Theses

A novel chimera protein, consisting of the C-terminus of Fibroblast Growth Factor (FGF) 21 and super FGF1, a mutant of the wild-type FGF1, was studied. The protein retained the stability of sFGF1 and the endocrine acting behaviors and binding efficiency of FGF21, so that it could be more practical for therapeutic uses as a wound healing and angiogenic agent. sFGF1- FGF21 was expressed and purified before utilizing various biophysical techniques to measure its stability, secondary and tertiary characteristics, and metabolic activity.


Detection Of Nitrogen Dioxide Via Graphene-Enhanced Raman Scattering, Spencer Hazeslip May 2023

Detection Of Nitrogen Dioxide Via Graphene-Enhanced Raman Scattering, Spencer Hazeslip

Chemistry & Biochemistry Undergraduate Honors Theses

This paper presents the development of a nitrogen dioxide (NO2) sensor that utilizes the phenomenon of graphene-enhanced Raman scattering (GERS). The sensor consists of monolayer graphene on a silicon wafer, functionalized noncovalently with Copper(II) 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (CuTTPc) via the solution soaking method. A custom sensing chamber was constructed to enable Raman spectra to be collected during NO2 exposure. The response of the sensor was found to be linear between 10 and 100 ppm NO2, indicating that it could be used for both detection and quantification. Furthermore, the sensor was shown to be reusable after …


Low-Cost Microstereolithography 3d Printing With Microfluidic Microsampling Applications, Lauren Twombly May 2023

Low-Cost Microstereolithography 3d Printing With Microfluidic Microsampling Applications, Lauren Twombly

Chemistry & Biochemistry Undergraduate Honors Theses

The growing field of stereolithography 3D printing has welcomed a new age ofmicrofluidic device fabrication techniques. When compared to previous planar fabrication techniques such as soft-lithography, stereolithography 3D printing offers highly automated procedures, reduced fabrication times, and greater complexity of device features. To date, the greatest tradeoff for 3D printing in microfluidic device fabrication is poorer resolution when compared to soft-lithography which can produce feature sizes on the nanometer scale. The poorer resolution of 3D printing limits the feasible size of features. While highly sophisticated 3D printers are capable of achieving sub 10 μm resolution, these instruments are incredibly expensive …


Carbon Dioxide Reduction On Large Area Liquid Metal Gallium-Indium Electrocatalysts, Thomas Hollis May 2023

Carbon Dioxide Reduction On Large Area Liquid Metal Gallium-Indium Electrocatalysts, Thomas Hollis

Chemistry & Biochemistry Undergraduate Honors Theses

Carbon dioxide (CO2) is widely known as a greenhouse gas that contributes to global warming due to the burning of fossil fuels. The carbon dioxide reduction reaction (CO2RR) is widely studied to reutilize CO2 to useful products, including methane, ethane, and carbon monoxide. This project studies the use of liquid metal gallium-indium as an electrocatalyst to perform CO2 reduction to carbon monoxide (CO) or possibly solid carbon in various solutions. Gallium-indium is characterized and studied through its “wetting” properties and adhesion to substrate foil through the measurement of contact angles inside solution. These liquid …


Developing Methods For Pattern Transfer In Photoelectrochemical Lithography, Ashlyn Descarpentrie May 2023

Developing Methods For Pattern Transfer In Photoelectrochemical Lithography, Ashlyn Descarpentrie

Chemistry & Biochemistry Undergraduate Honors Theses

The microprocessor industry has historically been driven by the goal of shrinking devices. To create features small enough to fit on such devices, photolithography has conventionally been used in the micropatterning of noble metal surfaces. Photolithography is a complicated and expensive process that involves a cleanroom, metallization processes, and photoresist. While this investment makes sense for high revenue applications, a number of microelectronic devices do not require nanometer-scale patterned features. Examples of such applications include specific types of antennae, sensing electrodes, and photocatalysts. Photolithography for these devices is thus too costly in both money and energy. The Coridan lab has …


Unassisted Photoelectrochemical Solar-To-Hydrogen On Cubi2o4 Photocathodes Using Glycerol As A Sacrificial Oxidant, Caroline Eddy Dec 2022

Unassisted Photoelectrochemical Solar-To-Hydrogen On Cubi2o4 Photocathodes Using Glycerol As A Sacrificial Oxidant, Caroline Eddy

Chemistry & Biochemistry Undergraduate Honors Theses

The need to decarbonize society has driven the development of alternative energy technologies. Solar panels are capable of generating electricity at large scale and at competitive costs to fossil fuels, such as coal or natural gas. However, they are only capable of generating electricity when the sun is out. It is therefore necessary to understand how to store that energy for on-demand use. It is also desirable that the storage be portable, lightweight, and compatible with transportation infrastructure like fossil fuels are. A very desirable chemical fuel is H2 which can be produced simply by water electrolysis. Production of …


Investigation Of The Binding Domain Interfaces Of The C-Terminus Of The Albino3 Insertase And The 43kda Chloroplast Signal Recognition Particle Subunit Via Single Molecule Förster Resonance Energy Transfer, Amanda Tomanek May 2022

Investigation Of The Binding Domain Interfaces Of The C-Terminus Of The Albino3 Insertase And The 43kda Chloroplast Signal Recognition Particle Subunit Via Single Molecule Förster Resonance Energy Transfer, Amanda Tomanek

Chemistry & Biochemistry Undergraduate Honors Theses

Fluorescent labeling is a technique used for visualizing functional groups contained in biomolecules by fluorescence imaging. This technique was used in this project to analyze post-translational targeting of light-harvesting chlorophyll-binding proteins (LHCP), which are the core complexes that harvest sunlight to drive photosynthetic electron transfer. This protein is synthesized in the cytosol and post-translationally targeted to the stroma of chloroplasts. CpSRP43 is a signal recognition particle (SRP) subunit unique to chloroplasts, which has been shown to interact with the stroma-soluble C-terminus of the thylakoid-bound Albino3 insertase (Alb3-Cterm). In the chloroplast stroma, targeting to thylakoids is performed via the cpSRP pathway …


“Translation Of Hdac6 Pet Imaging Using [18f]Ekz-001 – Cgmp Production And Measurement Of Hdac6 Target Occupancy In Nhps” – A Review, Dania Rahal May 2022

“Translation Of Hdac6 Pet Imaging Using [18f]Ekz-001 – Cgmp Production And Measurement Of Hdac6 Target Occupancy In Nhps” – A Review, Dania Rahal

Chemistry & Biochemistry Undergraduate Honors Theses

The inhibition of histone deacetylase 6 (HDAC6) has been reported to alleviate the effects of neurodegenerative diseases such as Alzheimer’s disease. The brain-penetrant PET radioligand [18F]EKZ-001 has high affinity and selectivity towards HDAC6 and therefore suggests great promise in therapeutic treatment studies and development for neurodegenerative diseases. “Translation of HDAC6 PET imaging using [18F]EKZ-001 – cGMP production and measurement of HDAC6 target occupancy in NHPs” has achieved an effective, fully automated method of producing [18F]EKZ-001 in compliance with current good manufacturing practices (cGMP) to support the translation of [18F]EKZ-001 PET for …


The Design Of A Efficient Production And Purification Of Fibroblast Growth Factor 2, Mandeep Kaur May 2022

The Design Of A Efficient Production And Purification Of Fibroblast Growth Factor 2, Mandeep Kaur

Chemistry & Biochemistry Undergraduate Honors Theses

Chronic wounds pose a major problem in the United States with an estimate of twenty-five million dollars a year spent on associated treatments. Growth factors can be used as a potential treatment for chronic wounds since they promote cell proliferation and angiogenesis. This study employs one specific growth factor, fibroblast growth factor 2 (FGF2) so that it could potentially be used in future treatment. Wild-type FGF2 is thermally unstable, and it has a mean elimination time of 7.6 hours. This study attempted to improve upon its stability through a mutation on the heparin binding loop. The mutation performed was K134E. …


Effect Of Charged Lipids On The Ionization Behavior Of Glutamic Acid Containing Transmembrane Helices, Brooke Nunn May 2020

Effect Of Charged Lipids On The Ionization Behavior Of Glutamic Acid Containing Transmembrane Helices, Brooke Nunn

Chemistry & Biochemistry Undergraduate Honors Theses

Transmembrane proteins make up critical components of living cells. Protein function can be greatly impacted by the charged state of its respective components, the side chains of amino acid residues. Thus far, in the lipid membrane, little is known about the properties of residues such as glutamic acid. To explore these properties, I have included glutamic acid in a suitable model peptide-lipid system for fundamental biophysical experiments. Within the system, I have placed a glutamic acid residue instead of leucine in the L14 position of the helical hydrophobic peptide GWALP23 (acetyl-GGALWLALALALAL14ALALWLAGA-amide). Substitutions of glutamine and aspartic acid serve …


Enzyme Kinetics Studies To Guide Mathematical Modeling Of Microdialysis Sampling To Predict In Situ Biochemistry, Justin M. Klucher May 2017

Enzyme Kinetics Studies To Guide Mathematical Modeling Of Microdialysis Sampling To Predict In Situ Biochemistry, Justin M. Klucher

Chemistry & Biochemistry Undergraduate Honors Theses

Microdialysis is a diffusion-based sampling method that can be useful for monitoring various biological systems. Matrix metalloproteinases are a class of enzymes responsible for remodeling the extracellular matrix that, when dysregulated, are linked to various diseases. The delivery method of microdialysis is of particular interest as a sampling technique for enzymatic reactions. Microdialysis was performed in vitro using a model enzyme, porcine pancreatic elastase, because it is a useful substitute for matrix metalloproteinases. A colorimetric substrate for elastase, succinyl-ala-ala-ala-p-nitroanilide, and its product p-nitroaniline were measured using a UV-Vis spectrophotometer. Using an expanded Beer’s Law equation, both analytes’ concentrations were determined …


Regulation Of The Reaction Between Cytochrome C And Cytochrome Oxidase, Jennifer Silva-Nash May 2016

Regulation Of The Reaction Between Cytochrome C And Cytochrome Oxidase, Jennifer Silva-Nash

Chemistry & Biochemistry Undergraduate Honors Theses

Irreversible brain damage is commonly seen in patients that have suffered strokes, cardiac arrest, or other brain ischemia events. The hypoxic conditions result in neuron death, and previous studies have shown that additional damage occurs when blood flow is restored. It is thought that the lack of energy production during post-ischemia events also causes severe brain damage, as the brain heavily depends on oxidative phosphorylation. Cytochrome c (Cyt c) plays a crucial role in this energy production by means of the electron transport chain (ETC), transferring electrons between complexes ΙΙΙ (cytochrome bc1) and ΙV (cytochrome c oxidase, CcO). Mitochondrial …


Synthesis Of Microgel Polymers As Catalysts, Hannah N. Miller May 2016

Synthesis Of Microgel Polymers As Catalysts, Hannah N. Miller

Chemistry & Biochemistry Undergraduate Honors Theses

New developments in organic synthesis show promise in achieving the best catalytic properties for the hydrolysis of glycosidic bonds through microgel polymers and transition metal complexes. A monomer mix of ethylene glycol dimethacrylate, butyl acrylate, and styrene form miniemulsion polymers after sonication and exposure to UV light. Gravimetrical analysis is used to determine the most suitable polymerization conditions by performing experiments at varying pH values, temperatures, monomer amounts, initiator amounts, and lamp heights. The final data show that the best polymerization conditions are a pH of 10.50 at 0°C with a high monomer ratio, 20% initiator amount, and a lamp …


Improving Photocatalytic Activity By Appending A Quinone To Ruthenium Polypyridyl Complex, Amy N. James May 2016

Improving Photocatalytic Activity By Appending A Quinone To Ruthenium Polypyridyl Complex, Amy N. James

Chemistry & Biochemistry Undergraduate Honors Theses

By converting natural light energy into chemical energy, chemists are studying ways to take advantage of clean energy. The rising precedence of “green chemistry” has led to academic interest in the activity of photocatalysts and harnessing visible light in an efficient, accessible, and safe manner. Photochemistry is an upcoming and fascinating field of study that has made significant progress, but also has great potential for future work. By utilizing light as a natural energy source, many reaction processes in chemistry can be viewed with a new perspective. Ru(bpy)32+ is one of the most widely used photocatalysts. An efficient …


Staphylococcal Nuclease And Ubiquitin Local Folding Energies And Rates Using Peps-Hdx-Esi-Ms, Julie Rhee May 2016

Staphylococcal Nuclease And Ubiquitin Local Folding Energies And Rates Using Peps-Hdx-Esi-Ms, Julie Rhee

Chemistry & Biochemistry Undergraduate Honors Theses

In this study, Protein Equilibrium Population Snapshot Hydrogen-Deuterium Exchange Electrospray Ionization Mass Spectrometry (PEPS-HDX-ESI-MS) was applied to study the local regions of model proteins, staphylococcal nuclease and ubiquitin. The hydrogen deuterium exchange (HDX) has become a key technique for studying the structural and dynamic aspects of proteins in solution. This technique creates a rapid exchange between all of the exchangeable hydrogen ions with deuterium when the protein is exposed to a solvent. The PEPS method is an equilibrium-based method used to determine the populations of the closed native and open denatured states of a protein. By combining the applications of …


Influence Of Cholesterol On Single Arginine-Containing Transmembrane Helical Peptides, Jordana K. Thibado May 2016

Influence Of Cholesterol On Single Arginine-Containing Transmembrane Helical Peptides, Jordana K. Thibado

Chemistry & Biochemistry Undergraduate Honors Theses

An essential component of animal cells, cholesterol exerts significant influence on the physical properties of the cell membrane and in turn, its constituents. One such category of constituents, the membrane proteins, are responsible for diverse and essential biological functions and often contain polar amino acids. Although sparse within the hydrophobic interior of lipid-bilayer membranes, polar amino acid residues are highly conserved and may play pivotal roles in determining specific structural and functional properties of key proteins. To gain greater understanding of the lipid membrane environment, and more broadly, cellular function, a model peptide framework termed “GWALP23” (acetyl-GGALWLALALAL12AL14 …