Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Nonlocal Polarization Interferometry And Entanglement Detection, Brian P. Williams Dec 2014

Nonlocal Polarization Interferometry And Entanglement Detection, Brian P. Williams

Doctoral Dissertations

At present, quantum entanglement is a resource, distributed to enable a variety of quantum information applications such as quantum key distribution, superdense coding, and teleportation. Necessarily, the distribution and characterization of entanglement is fundamental to its application. This dissertation details three research efforts to enable nonlocal entanglement detection, distribution, and characterization. Foremost of these efforts, we present the theory and demonstration of a nonlocal polarization interferometer capable of detecting entanglement and identifying Bell states statistically. This is possible due to the interferometer’s unique correlation dependence on the anti-diagonal elements of the density matrix, which have distinct bounds for separable states …


Hi-Fidelity Simulation Of The Self-Assembly And Dynamics Of Colloids And Polymeric Solutions With Long Range Interactions, Mahdy Malekzadeh Moghani Dec 2014

Hi-Fidelity Simulation Of The Self-Assembly And Dynamics Of Colloids And Polymeric Solutions With Long Range Interactions, Mahdy Malekzadeh Moghani

Doctoral Dissertations

Modeling the equilibrium properties and dynamic response of the colloidal and polymeric solutions provides valuable insight into numerous biological and industrial processes and facilitates development of novel technologies. To this end, the centerpiece of this research is to incorporate the long range electrostatic or hydrodynamic interactions via computationally efficient algorithms and to investigate the effect of these interactions on the self-assembly of colloidal particles and dynamic properties of polymeric solutions. Specifically, self-assembly of a new class of materials, namely bipolar Janus nano-particles, is investigated via molecular dynamic simulation in order to establish the relationship between individual particle characteristics, such as …


Laser-Induced Breakdown Spectroscopy For Analysis Of High Density Methane-Oxygen Mixtures, Matthew Dackman Dec 2014

Laser-Induced Breakdown Spectroscopy For Analysis Of High Density Methane-Oxygen Mixtures, Matthew Dackman

Masters Theses

The applicability of laser-induced breakdown spectroscopy (LIBS) toward greater than atmospheric density combustion diagnostics is examined. Specifically, this involves ascertaining the feasibility of measuring chemical equivalence ratios directly from atomic emission spectra at high density. The need for such measurement arises from the desire to quantify real time, localized combustion performance in weakly mixed flows. Insufficiently mixed flows generally result in unwanted byproducts, possess the propensity for overall combustion instability, and are increasingly likely to experience localized flame extinction.

We simulate methane/oxygen combustion in ambient pressures ranging 1 to 4 atmospheres, demonstrating these results to be analogous to what would …


Atomic And Molecular Laser-Induced Breakdown Spectroscopy Above A Titanium Target, Alexander Charles Woods Aug 2014

Atomic And Molecular Laser-Induced Breakdown Spectroscopy Above A Titanium Target, Alexander Charles Woods

Doctoral Dissertations

The goal of this research is to use optical emission spectroscopy to investigate the processes occurring subsequent to laser ablation of a titanium sample. Laser-induced breakdown spectroscopy provides a procedure for atomic and molecular identification for particular constituents of a laser-induced plasma. Atomic spectral line shapes provide a diagnostic tool for characterizing laser induced plasma, particularly within the first hundreds of nanoseconds. Molecular recombination and/or excitation of selected molecules can lead to simultaneous detection of atomic and molecular species via spectral analysis. Nonlinear fitting of synthetic molecular spectra, calculated via diatomic quantum theory, provides tools for identification, temperature measurement, and …


Aluminum Monoxide Emission Measurements Following Laser-Induced Breakdown For Plasma Characterization, David Michael Surmick Aug 2014

Aluminum Monoxide Emission Measurements Following Laser-Induced Breakdown For Plasma Characterization, David Michael Surmick

Masters Theses

In this work, spectroscopic emissions from laser ablated aluminum samples are used to characterize the time dependent decay of laser-induced plasma. The plasma is created by tightly focusing nanosecond pulsed laser radiation. Time resolved measurements of the plasma are made with a gated, intensified linear diode array coupled to an optical multichannel analyzer and/or an intensified charged coupled device. Time resolution is achieved by synchronizing the laser with the measurement rate of the array detector.

Computed diatomic molecular aluminum monoxide emissions were used to infer the temperature of the plasma as a function of time. This was completed by comparing …


Radiation-Induced Radicals In Polyurea-Crosslinked Silica Aerogel, Benjamin Michael Walters Aug 2014

Radiation-Induced Radicals In Polyurea-Crosslinked Silica Aerogel, Benjamin Michael Walters

Masters Theses

Free radicals are atoms or molecules with an odd number of electrons in an outer shell. Since electrons typically occur in pairs, this leaves one electron that is unpaired. In seek of another electron to pair with, free radicals react with and steal electrons from neighboring molecules, which then become free radicals themselves. This can start a chain reaction, cascading into large scale damage.

Ionizing radiation can tear through molecules, just as bullets can tear through things that we see. If free radicals can be detected, and seen to increase in a material upon radiation exposure, this can indicate molecular …


Neutron Polarimetry With Polarized 3he For The Npdgamma Experiment, Matthew Martin Musgrave May 2014

Neutron Polarimetry With Polarized 3he For The Npdgamma Experiment, Matthew Martin Musgrave

Doctoral Dissertations

Cold neutrons enable the study of the fundamental interactions of matter in low-energy, low-background experiments that complement the efforts of high-energy particle accelerators. Neutrons possess an intrinsic spin, and the polarization of a beam of neutrons defines the degree to which their spins are oriented in a given direction. The NPDGamma experiment uses a polarized beam of cold neutrons to make a high precision measurement, on the order of one part in 100 million, of the parity-violating asymmetry in the angular distribution of emitted gamma-rays from the capture of polarized neutrons on protons. This asymmetry is a result of the …