Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

Accretion

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 139

Full-Text Articles in Physical Sciences and Mathematics

Strongly Magnetized Accretion In Two Ultracompact Binary Systems, Thomas J. Maccarone, Thomas Kupfer, Edgar Najera Casarrubias, Liliana E. Rivera Sandoval, Aarran W. Shaw, Christoper T. Britt, Jan Van Roestel, David R. Zurek Mar 2024

Strongly Magnetized Accretion In Two Ultracompact Binary Systems, Thomas J. Maccarone, Thomas Kupfer, Edgar Najera Casarrubias, Liliana E. Rivera Sandoval, Aarran W. Shaw, Christoper T. Britt, Jan Van Roestel, David R. Zurek

Physics and Astronomy Faculty Publications and Presentations

We present the discoveries of two of AM CVn systems, Gaia14aae and SDSS J080449.49+161624.8, which show X-ray pulsations at their orbital periods, indicative of magnetically collimated accretion. Both also show indications of higher rates of mass transfer relative to the expectations from binary evolution driven purely by gravitational radiation, based on existing optical data for Gaia14aae, which show a hotter white dwarf temperature than expected from standard evolutionary models, and X-ray data for SDSS J080449.49+161624.8 which show a luminosity 10−100 times higher than those for other AM CVn at similar orbital periods. The higher mass transfer rates could be driven …


An Investigation Of The Accretion Processes In T Tauri And Herbig Ae/Be Systems Using High Resolution Optical And Near-Infrared Spectroscopy, Joshua Kern Dec 2023

An Investigation Of The Accretion Processes In T Tauri And Herbig Ae/Be Systems Using High Resolution Optical And Near-Infrared Spectroscopy, Joshua Kern

All Dissertations

Star and planet formation is intimately tied to the accretion of material from the environments in which they form. During the formation process, disks of gas and dust develop in young stellar objects through which material is facilitated to the star and forming planets. Theoretical models of these accretion processes invoke viscous spreading via hydrodynamics, as well as more complex interactions with magnetic fields be it from the stellar component or the formation environment in order to catalyze these mass flows. These accretion models predict various scenarios including magnetospheric accretion as well as supersonic accretion flows in the disk atmosphere …


Simulating The Eccentricity Evolution Of Accreting Equal-Mass Binaries: Numerical Sensitivity To The Computational Domain Size And Grid Resolution, Zhongtian Hu Aug 2023

Simulating The Eccentricity Evolution Of Accreting Equal-Mass Binaries: Numerical Sensitivity To The Computational Domain Size And Grid Resolution, Zhongtian Hu

All Theses

With high resolution hydrodynamics simulations, we show that the optimal values of domain radius and grid resolution for the software Sailfish when simulating time-based eccentricity evolution of equal mass, non-circular accreting binaries in a circumbinary disk to be $r_{\rm out} \leq 15a$ and $\delta x / a \le 0.01 $. These values provide a useful guideline for optimizing the performance of simulation runs while maintaining scientific accuracy. Each artificial parameter is probed with 15 runs of 2000 orbits each.


Evaluating Neutron Star Binding Energies Using Rotating Accreting Models, Nathan Moore Apr 2023

Evaluating Neutron Star Binding Energies Using Rotating Accreting Models, Nathan Moore

Honors Theses

Neutron star binding energy increases due to accreting matter from neighboring astronomical bodies, and decreases due to the star spinning up, increasing its angular velocity. We present a novel set of models that account for both increasing angular velocity and accreting matter to track a neutron star’s evolution. We arrive at these models through studying and reconfiguring computational investigations from the past, particularly a code which generates a model for a given fixed baryon mass and angular velocity and another that takes it from one baryon mass and angular velocity to the next one through accretion, to obtain a full …


Polar Alignment Of Massive Retrograde Circumbinary Discs, Charles Abod Aug 2022

Polar Alignment Of Massive Retrograde Circumbinary Discs, Charles Abod

UNLV Theses, Dissertations, Professional Papers, and Capstones

To understand the observed circumbinary planetary systems, we must first explain the dynamics of the circumbinary discs in which they formed. Observations of circumbinary discs show that misalignments to the binary orbital plane may be common. Here we investigate these systems by exploring the orbital dynamics of three-body systems and circumbinary discs. A test particle orbit around an eccentric binary has two stationary states in which there is no nodal precession: coplanar and polar. Nodal precession of a misaligned test particle orbit centres on one of these stationary states. A low mass circumbinary disc undergoes the same precession and moves …


Physical Properties Of Brackett Emitters In The Apogee Dr17 Catalog, Elliott Khilfeh, Hunter Campbell, Kevin R. Covey, Marina Kounkel, Richard Ballentyne Apr 2022

Physical Properties Of Brackett Emitters In The Apogee Dr17 Catalog, Elliott Khilfeh, Hunter Campbell, Kevin R. Covey, Marina Kounkel, Richard Ballentyne

WWU Honors College Senior Projects

In the process of accumulating mass (accretion), young stars channel ionized gas from the protoplanetary disk to the stellar surface along magnetic field lines. Upon impacting the photosphere, the gas cools down, recombining and emitting hydrogen spectral lines. Measuring these emission lines allows us to determine the temperature and density of the gas in those accretion streams. This then enables us to test whether those parameters depend on the accretion rate. We present measurements of equivalent widths and line ratios for Brackett (Br) 11 – 20 lines for 3366 observations of 940 pre-main sequence stars observed with APOGEE as of …


Gw Ori: Circumtriple Rings And Planets, Jeremy L. Smallwood, Rebecca Nealon, Cheng Chen, Rebecca G. Martin, Jiaqing Bi, Ruobing Dong, Christophe Pinte Sep 2021

Gw Ori: Circumtriple Rings And Planets, Jeremy L. Smallwood, Rebecca Nealon, Cheng Chen, Rebecca G. Martin, Jiaqing Bi, Ruobing Dong, Christophe Pinte

Physics & Astronomy Faculty Research

GW Ori is a hierarchical triple star system with a misaligned circumtriple protoplanetary disc. Recent Atacama Large Millimeter/submillimeter Array observations have identified three dust rings with a prominent gap at 100 au and misalignments between each of the rings. A break in the gas disc may be driven by the torque from either the triple star system or a planet that is massive enough to carve a gap in the disc. Once the disc is broken, the rings nodally precess on different time-scales and become misaligned. We investigate the origins of the dust rings by means of N-body integrations and …


Dynamical Modelling Of Cxogbs J175553.2-281633: A 10 H Long Orbital Period Cataclysmic Variable, Sebastian Gomez, Manuel A. P. Torres, Peter G. Jonker, Zuzanna Kostrzewa-Rutkowska, Theo F. J. Van Grunsven, Andrzej Udalski, Robert I. Hynes, Craig O. Heinke, Thomas J. Maccarone, Ricardo Salinas, Jay Strader Mar 2021

Dynamical Modelling Of Cxogbs J175553.2-281633: A 10 H Long Orbital Period Cataclysmic Variable, Sebastian Gomez, Manuel A. P. Torres, Peter G. Jonker, Zuzanna Kostrzewa-Rutkowska, Theo F. J. Van Grunsven, Andrzej Udalski, Robert I. Hynes, Craig O. Heinke, Thomas J. Maccarone, Ricardo Salinas, Jay Strader

Faculty Publications

We present modelling of the long-term optical light and radial velocity curves of the binary stellar system CXOGBS J175553.2-281633, first detected in X-rays in the Chandra Galactic Bulge Survey. We analysed 7 yr of optical I-band photometry from Optical Gravitational Lensing Experiment and found long-term variations from year to year. These long-term variations can most likely be explained with by either variations in the luminosity of the accretion disc or a spotted secondary star. The phased light curve has a sinusoidal shape, which we interpret as being due to ellipsoidal modulations. We improve the orbital period to be P = …


Constraining Protoplanetary Disc Accretion And Young Planets Using Alma Kinematic Observations, Ian Rabago, Zhaohuan Zhu Feb 2021

Constraining Protoplanetary Disc Accretion And Young Planets Using Alma Kinematic Observations, Ian Rabago, Zhaohuan Zhu

Physics & Astronomy Faculty Research

Recent ALMA molecular line observations have revealed 3D gas velocity structure in protoplanetary discs, shedding light on mechanisms of disc accretion and structure formation. (1) By carrying out viscous simulations, we confirm that the disc's velocity structure differs dramatically using vertical stress profiles from different accretion mechanisms. Thus, kinematic observations tracing flows at different disc heights can potentially distinguish different accretion mechanisms. On the other hand, the disc surface density evolution is mostly determined by the vertically integrated stress. The sharp disc outer edge constrained by recent kinematic observations can be caused by a radially varying alpha in the disc. …


Kozai–Lidov Oscillations Triggered By A Tilt Instability Of Detached Circumplanetary Discs, Rebecca G. Martin, Zhaohuan Zhu, Philip J. Armitage, Chao-Chin Yang, Hans Baehr Jan 2021

Kozai–Lidov Oscillations Triggered By A Tilt Instability Of Detached Circumplanetary Discs, Rebecca G. Martin, Zhaohuan Zhu, Philip J. Armitage, Chao-Chin Yang, Hans Baehr

Physics & Astronomy Faculty Research

Circumplanetary discs can be linearly unstable to the growth of disc tilt in the tidal potential of the star–planet system. We use 3D hydrodynamical simulations to characterize the disc conditions needed for instability, together with its long-term evolution. Tilt growth occurs for disc aspect ratios, evaluated near the disc outer edge, of H/r ≳ 0.05, with a weak dependence on viscosity in the wave-like regime of warp propagation. Lower mass giant planets are more likely to have circumplanetary discs that satisfy the conditions for instability. We show that the tilt instability can excite the inclination to above the threshold where …


Accretion Onto Endoparasitic Black Holes At The Center Of Neutron Stars, Chloe B. Richards Jan 2021

Accretion Onto Endoparasitic Black Holes At The Center Of Neutron Stars, Chloe B. Richards

Honors Projects

We revisit the system consisting of a neutron star that harbors a small, possibly primordial, black hole at its center, focusing on a nonspinning black hole embedded in a nonrotating neutron star. Extending earlier treatments, we provide an analytical treatment describing the rate of secular accretion of the neutron star matter onto the black hole, adopting the relativistic Bondi accretion formalism for stiff equations of state that we presented elsewhere. We use these accretion rates to sketch the evolution of the system analytically until the neutron star is completely consumed. We also perform numerical simulations in full general relativity for …


A Mildly Relativistic Outflow From The Energentic, Fast-Rising Blue Optical Transient Css161010 In A Dwarf Galaxy, Deanne L. Coppejans, R. Margutti, G. Terreran, A. J. Nayana, E. R. Coughlin, T. Laskar, K. D. Alexander, M. Bietenholz, D. Caprioli, P. Chandra, M. R. Drout, D. Frederiks, C. Frohmaier, K. H. Hurley, C. S. Kochanek, M. Macleod, A. Meisner, P. E. Nugent, A. Ridnaia, D. J. Sand, D. Svinkin, C. Ward, S. Yang, A. Baldeschi, I. V. Chilingarian, Y. Dong, C. Esquivia, W. Fong, C. Guidorzi, P. Lundqvist, D. Milisavljevic May 2020

A Mildly Relativistic Outflow From The Energentic, Fast-Rising Blue Optical Transient Css161010 In A Dwarf Galaxy, Deanne L. Coppejans, R. Margutti, G. Terreran, A. J. Nayana, E. R. Coughlin, T. Laskar, K. D. Alexander, M. Bietenholz, D. Caprioli, P. Chandra, M. R. Drout, D. Frederiks, C. Frohmaier, K. H. Hurley, C. S. Kochanek, M. Macleod, A. Meisner, P. E. Nugent, A. Ridnaia, D. J. Sand, D. Svinkin, C. Ward, S. Yang, A. Baldeschi, I. V. Chilingarian, Y. Dong, C. Esquivia, W. Fong, C. Guidorzi, P. Lundqvist, D. Milisavljevic

Physics & Astronomy Faculty Research

We present X-ray and radio observations of the Fast Blue Optical Transient CRTS-CSS161010 J045834−081803 (CSS161010 hereafter) at t = 69–531 days. CSS161010 shows luminous X-ray (L x ~ 5 × 1039 erg s−1) and radio (L ν ~ 1029 erg s−1 Hz−1) emission. The radio emission peaked at ~100 days post-transient explosion and rapidly decayed. We interpret these observations in the context of synchrotron emission from an expanding blast wave. CSS161010 launched a mildly relativistic outflow with velocity Γβc ≥ 0.55c at ~100 days. This is faster than the non-relativistic AT 2018cow (Γβc ~ 0.1c) and closer to ZTF18abvkwla (Γβc …


Dust Condensation In Evolving Discs And The Composition Of Planetary Building Blocks, Min Li, Shichun Huang, Michail I. Petaev, Zhaohuan Zhu, Jason H. Steffen May 2020

Dust Condensation In Evolving Discs And The Composition Of Planetary Building Blocks, Min Li, Shichun Huang, Michail I. Petaev, Zhaohuan Zhu, Jason H. Steffen

Physics & Astronomy Faculty Research

Partial condensation of dust from the Solar nebula is likely responsible for the diverse chemical compositions of chondrites and rocky planets/planetesimals in the inner Solar system. We present a forward physical–chemical model of a protoplanetary disc to predict the chemical compositions of planetary building blocks that may form from such a disc. Our model includes the physical evolution of the disc and the condensation, partial advection, and decoupling of the dust within it. The chemical composition of the condensate changes with time and radius. We compare the results of two dust condensation models: one where an element condenses when the …


Global 3d Radiation Magnetohydrodynamic Simulations For Fu Ori's Accretion Disc And Observational Signatures Of Magnetic Fields, Zhaohuan Zhu, Yan-Fei Jiang, James M. Stone Apr 2020

Global 3d Radiation Magnetohydrodynamic Simulations For Fu Ori's Accretion Disc And Observational Signatures Of Magnetic Fields, Zhaohuan Zhu, Yan-Fei Jiang, James M. Stone

Physics & Astronomy Faculty Research

FU Ori is the prototype of FU Orionis systems that are outbursting protoplanetary discs. Magnetic fields in FU Ori’s accretion discs have previously been detected using spectropolarimetry observations for Zeeman effects. We carry out global radiation ideal MHD simulations to study FU Ori’s inner accretion disc. We find that (1) when the disc is threaded by vertical magnetic fields, most accretion occurs in the magnetically dominated atmosphere at z ∼ R, similar to the ‘surface accretion’ mechanism in previous locally isothermal MHD simulations. (2) A moderate disc wind is launched in the vertical field simulations with a terminal speed of …


Reflection And Reverberation In Neutron Star Low-Mass X-Ray Binaries, Benjamin Coughenour Jan 2020

Reflection And Reverberation In Neutron Star Low-Mass X-Ray Binaries, Benjamin Coughenour

Wayne State University Dissertations

Neutron star low-mass X-ray binaries (NS LMXBs) are systems which consist of a NS and a low-mass companion star. They are naturally variable on a variety of timescales, and are even classified by their X-ray spectral variability on the timescales of hours to days. The most luminous NS LMXB sources are known as ‘Z’ sources, because they trace out a characteristic ‘Z’ shape when plotted on a color-color or hardness-intensity diagram. The physical mechanisms causing this variability are not well understood. To try to address this, we model spectra taken from different positions on a hardness-intensity diagram of two Z …


The Frequency Of Kozai–Lidov Disc Oscillation Driven Giant Outbursts In Be/X-Ray Binaries, Rebecca G. Martin, Alessia Franchini Aug 2019

The Frequency Of Kozai–Lidov Disc Oscillation Driven Giant Outbursts In Be/X-Ray Binaries, Rebecca G. Martin, Alessia Franchini

Physics & Astronomy Faculty Research

Giant outbursts of Be/X-ray binaries may occur when a Be-star disc undergoes strong eccentricity growth due to the Kozai–Lidov (KL) mechanism. The KL effect acts on a disc that is highly inclined to the binary orbital plane provided that the disc aspect ratio is sufficiently small. The eccentric disc overflows its Roche lobe and material flows from the Be star disc over to the companion neutron star causing X-ray activity. With N-body simulations and steady state decretion disc models we explore system parameters for which a disc in the Be/X-ray binary 4U 0115+634 is KL unstable and the resulting time-scale …


Pulsational Mapping Of Calcium Across The Surface Of A White Dwarf, Susan E. Thompson, Ted Von Hippel, Et Al. Aug 2019

Pulsational Mapping Of Calcium Across The Surface Of A White Dwarf, Susan E. Thompson, Ted Von Hippel, Et Al.

Ted von Hippel

We constrain the distribution of calcium across the surface of the white dwarf star G29-38 by combining time-series spectroscopy from Gemini-North with global time-series photometry from the Whole Earth Telescope. G29-38 is actively accreting metals from a known debris disk. Since the metals sink significantly faster than they mix across the surface, any inhomogeneity in the accretion process will appear as an inhomogeneity of the metals on the surface of the star. We measure the flux amplitudes and the calcium equivalent width amplitudes for two large pulsations excited on G29-38 in 2008. The ratio of these amplitudes best fits a …


Constraining The Surface Inhomogeneity And Settling Times Of Metals On Accreting White Dwarfs, Michael H. Montgomery, S.E. Thompson, Ted Von Hippel Aug 2019

Constraining The Surface Inhomogeneity And Settling Times Of Metals On Accreting White Dwarfs, Michael H. Montgomery, S.E. Thompson, Ted Von Hippel

Ted von Hippel

Due to the short settling times of metals in DA white dwarf atmospheres, any white dwarfs with photospheric metals must be actively accreting. It is therefore natural to expect that the metals may not be deposited uniformly on the surface of the star. We present calculations showing how the temperature variations associated with white dwarf pulsations lead to an observable diagnostic of the surface metal distribution, and we show what constraints current data sets are able to provide. We also investigate the effect that time-variable accretion has on the metal abundances of different species, and we show how this can …


The Newborn Planet Population Emerging From Ring-Like Structures In Discs, Giuseppe Lodato, Giovanni Dipierro, Enrico Ragusa, Feng Long, Gregory J. Herczeg, Ilaria Pascucci, Paola Pinilla, Carlo F. Manara, Marco Tazzari, Yao Liu, Gijs D. Mulders, Daniel Harsono, Yann Boehler, François Ménard, Doug Johnstone, Colette Salyk, Gerrit Van Der Plas, Sylvie Cabrit, Suzan Edwards, William J. Fischer, Nathan Hendler, Brunella Nisini, Elisabetta Rigliaco, Henning Avenhaus, Andrea Banzatti, Michael Gully-Santiago Jun 2019

The Newborn Planet Population Emerging From Ring-Like Structures In Discs, Giuseppe Lodato, Giovanni Dipierro, Enrico Ragusa, Feng Long, Gregory J. Herczeg, Ilaria Pascucci, Paola Pinilla, Carlo F. Manara, Marco Tazzari, Yao Liu, Gijs D. Mulders, Daniel Harsono, Yann Boehler, François Ménard, Doug Johnstone, Colette Salyk, Gerrit Van Der Plas, Sylvie Cabrit, Suzan Edwards, William J. Fischer, Nathan Hendler, Brunella Nisini, Elisabetta Rigliaco, Henning Avenhaus, Andrea Banzatti, Michael Gully-Santiago

Astronomy: Faculty Publications

ALMA has observed a plethora of ring-like structures in planet-forming discs at distances of 10–100 au from their host star. Although several mechanisms have been invoked to explain the origin of such rings, a common explanation is that they trace new-born planets. Under the planetary hypothesis, a natural question is how to reconcile the apparently high frequency of gap-carving planets at 10–100 au with the paucity of Jupiter-mass planets observed around main-sequence stars at those separations. Here, we provide an analysis of the new-born planet population emerging from observations of gaps in discs, under the assumption that the observed gaps …


Alignment Of A Circumbinary Disc Around An Eccentric Binary With Application To Kh 15d, Jeremy L. Smallwood, Stephen H. Lubow, Alessia Franchini, Rebecca G. Martin Apr 2019

Alignment Of A Circumbinary Disc Around An Eccentric Binary With Application To Kh 15d, Jeremy L. Smallwood, Stephen H. Lubow, Alessia Franchini, Rebecca G. Martin

Physics & Astronomy Faculty Research

We analyse the evolution of a mildly inclined circumbinary disc that orbits an eccentric orbit binary by means of smoothed particle hydrodynamics (SPH) simulations and linear theory. We show that the alignment process of an initially misaligned circumbinary disc around an eccentric orbit binary is significantly different than around a circular orbit binary and involves tilt oscillations. The more eccentric the binary, the larger the tilt oscillations and the longer it takes to damp these oscillations. A circumbinary disc that is only mildly inclined may increase its inclination by a factor of a few before it moves towards alignment. The …


Generalized Warped Disk Equations, Rebecca G. Martin, Stephen H. Lubow, J. E. Pringle, Alessia Franchini, Zhaohuan Zhu, Stephen Lepp, Rebecca Nealon, C. J. Nixon, David Vallet Apr 2019

Generalized Warped Disk Equations, Rebecca G. Martin, Stephen H. Lubow, J. E. Pringle, Alessia Franchini, Zhaohuan Zhu, Stephen Lepp, Rebecca Nealon, C. J. Nixon, David Vallet

Physics & Astronomy Faculty Research

The manner in which warps in accretion disks evolve depends on the magnitude of the viscosity. ... See full text for complete abstract.


Dust Traps In The Protoplanetary Disk Mwc 758: Two Vortices Produced By Two Giant Planets?, Clement Baruteau, Marcelo Barraza, Sebastian Perez, Simon Casassus, Ruobing Dong, Wladimir Lyra, Sebastian Marino, Valentin Christiaens, Zhaohuan Zhu, Andres Carmona, Florian Debras, Felipe Alarcon Mar 2019

Dust Traps In The Protoplanetary Disk Mwc 758: Two Vortices Produced By Two Giant Planets?, Clement Baruteau, Marcelo Barraza, Sebastian Perez, Simon Casassus, Ruobing Dong, Wladimir Lyra, Sebastian Marino, Valentin Christiaens, Zhaohuan Zhu, Andres Carmona, Florian Debras, Felipe Alarcon

Physics & Astronomy Faculty Research

Resolved ALMA and VLA observations indicate the existence of two dust traps in the protoplanetary disc MWC 758. By means of two-dimensional gas+dust hydrodynamical simulations post-processed with three-dimensional dust radiative transfer calculations, we show that the spirals in scattered light, the eccentric, asymmetric ring and the crescent-shaped structure in the (sub)millimetre can all be caused by two giant planets: a 1.5-Jupiter mass planet at 35 au (inside the spirals) and a 5-Jupiter mass planet at 140 au (outside the spirals). The outer planet forms a dust-trapping vortex at the inner edge of its gap (at ∼85 au), and the continuum …


Misaligned Accretion Disc Formation Via Kozai-Lidov Oscillations, Alessia Franchini, Rebecca G. Martin, Stephen H. Lubow Feb 2019

Misaligned Accretion Disc Formation Via Kozai-Lidov Oscillations, Alessia Franchini, Rebecca G. Martin, Stephen H. Lubow

Physics & Astronomy Faculty Research

We investigate the formation and evolution of misaligned accretion discs around the secondary component of a binary through mass transfer driven by Kozai–Lidov (KL) oscillations of the circumprimary disc’s eccentricity and inclination. We perform smoothed particle hydrodynamics simulations to study the amount of mass transferred to the secondary star as a function of both the disc and binary parameters. For the range of parameters we explore, we find that increasing the disc aspect ratio, viscosity parameter, and initial inclination as well as decreasing the binary mass ratio leads to larger amount of mass transfer, up to a maximum of about …


Late Delivery Of Nitrogen To The Earth, Cheng Chen, Jeremy L. Smallwood, Rebecca G. Martin, Mario Livio Jan 2019

Late Delivery Of Nitrogen To The Earth, Cheng Chen, Jeremy L. Smallwood, Rebecca G. Martin, Mario Livio

Physics & Astronomy Faculty Research

Atmospheric nitrogen may be a necessary ingredient for the habitability of a planet as its presence helps to prevent water loss from a planet. The present-day nitrogen isotopic ratio, N-15/N-14, in the Earth's atmosphere is a combination of the primitive Earth's ratio and the ratio that might have been delivered in comets and asteroids. Asteroids have a nitrogen isotopic ratio that is close to the Earth's. This indicates either a similar formation environment to the Earth or that the main source of nitrogen was delivery by asteroids. However, according to geological records, the Earth's atmosphere could have been enriched in …


Inclined Massive Planets In A Protoplanetary Disc: Gap Opening, Disc Breaking, And Observational Signatures, Zhaohuan Zhu Dec 2018

Inclined Massive Planets In A Protoplanetary Disc: Gap Opening, Disc Breaking, And Observational Signatures, Zhaohuan Zhu

Physics & Astronomy Faculty Research

We carry out 3D hydrodynamical simulations to study planet–disc interactions for inclined high-mass planets, focusing on the disc’s secular evolution induced by the planet. We find that, when the planet is massive enough and the induced gap is deep enough, the disc inside the planet’s orbit breaks from the outer disc. The inner and outer discs precess around the system’s total angular momentum vector independently at different precession rates, which causes significant disc misalignment. We derive the analytical formulae, which are also verified numerically, for: (1) the relationship between the planet mass and the depth/width of the induced gap, (2) …


Gaps And Rings In An Alma Survey Of Disks In The Taurus Star-Forming Region, Feng Long, Paola Pinilla, Gregory J. Herczeg, Daniel Harsono, Giovanni Dipierro, Ilaria Pascucci, Nathan Hendler, Marco Tazzari, Enrico Ragusa, Colette Salyk, Suzan Edwards, Giuseppe Lodato, Gerrit Van De Plas, Doug Johnstone, Yao Liu, Yann Boehler, Sylvie Cabrit, Carlo F. Manara, Francois Menard, Gijs D. Mulders, Brunella Nisini, William J. Fischer, Elisabetta Rigliaco, Andrea Banzatti, Henning Avenhaus, Michael Gully-Santiago Dec 2018

Gaps And Rings In An Alma Survey Of Disks In The Taurus Star-Forming Region, Feng Long, Paola Pinilla, Gregory J. Herczeg, Daniel Harsono, Giovanni Dipierro, Ilaria Pascucci, Nathan Hendler, Marco Tazzari, Enrico Ragusa, Colette Salyk, Suzan Edwards, Giuseppe Lodato, Gerrit Van De Plas, Doug Johnstone, Yao Liu, Yann Boehler, Sylvie Cabrit, Carlo F. Manara, Francois Menard, Gijs D. Mulders, Brunella Nisini, William J. Fischer, Elisabetta Rigliaco, Andrea Banzatti, Henning Avenhaus, Michael Gully-Santiago

Astronomy: Faculty Publications

Rings are the most frequently revealed substructure in ALMA dust observations of protoplanetary disks, but their origin is still hotly debated. In this paper, we identify dust substructures in 12 disks and measure their properties to investigate how they form. This subsample of disks is selected from a high-resolution (∼ 0.1200) ALMA 1.33 mm survey of 32 disks in the Taurus star-forming region, which was designed to cover a wide range of sub-mm brightness and to be unbiased to previously known substructures. While axisymmetric rings and gaps are common within our sample, spiral patterns and high contrast azimuthal asymmetries are …


Cm-Wavelength Obserations Of Mwc 758: Resolved Dust Trapping In A Vortex, Simon Casassus, Sebastián Marino, Wladimir Lyra, Clément Baruteau, Matías Vidal, Alwyn Wootten, Sebastián Pérez, Felipe Alarcon, Marcelo Barraza, Miguel Cárcamo, Ruobing Dong, Anibal Sierra, Zhaohuan Zhu, Luca Ricci, Valentin Christiaens, Lucas Cieza Nov 2018

Cm-Wavelength Obserations Of Mwc 758: Resolved Dust Trapping In A Vortex, Simon Casassus, Sebastián Marino, Wladimir Lyra, Clément Baruteau, Matías Vidal, Alwyn Wootten, Sebastián Pérez, Felipe Alarcon, Marcelo Barraza, Miguel Cárcamo, Ruobing Dong, Anibal Sierra, Zhaohuan Zhu, Luca Ricci, Valentin Christiaens, Lucas Cieza

Physics & Astronomy Faculty Research

The large crescents imaged by ALMA in transition discs suggest that azimuthal dust trapping concentrates the larger grains, but centimetre–wavelengths continuum observations are required to map the distribution of the largest observable grains. A previous detection at ∼1 cm of an unresolved clump along the outer ring of MWC 758 (Clump 1), and buried inside more extended sub-mm continuum, motivates followup VLA observations. Deep multiconfiguration integrations reveal the morphology of Clump 1 and additional cm-wave components that we characterize via comparison with a deconvolution of recent 342 GHz data (∼1 mm). ... See full text for complete abstract.


A New Look At T Tauri Star Forbidden Lines: Mhd-Driven Winds From The Inner Disk, Min Fang, Ilaria Pascucci, Suzan Edwards, Uma Gorti, Andrea Banzatti, Mario Flock, Patrick Hartigan, Gregory J. Herczeg, Andrea K. Dupree Nov 2018

A New Look At T Tauri Star Forbidden Lines: Mhd-Driven Winds From The Inner Disk, Min Fang, Ilaria Pascucci, Suzan Edwards, Uma Gorti, Andrea Banzatti, Mario Flock, Patrick Hartigan, Gregory J. Herczeg, Andrea K. Dupree

Astronomy: Faculty Publications

Magnetohydrodynamic (MHD) and photoevaporative winds are thought to play an important role in the evolution and dispersal of planet-forming disks. We report the first high-resolution (∆v ∼ 6 km s−1 ) analysis of [S II] λ4068, [O I] λ5577, and [O I] λ6300 lines from a sample of 48 T Tauri stars. Following Simon et al. (2016), we decompose them into three kinematic components: a high-velocity component (HVC) associated with jets, and a low-velocity narrow (LVC-NC) and broad (LVC-BC) components. We confirm previous findings that many LVCs are blueshifted by more than 1.5 km s−1 thus most likely trace a …


Warping A Protoplanetary Disc With A Planet On An Inclined Orbit, Rebecca Nealon, Giovanni Dipierro, Richard Alexander, Rebecca G. Martin, Chris Nixon Aug 2018

Warping A Protoplanetary Disc With A Planet On An Inclined Orbit, Rebecca Nealon, Giovanni Dipierro, Richard Alexander, Rebecca G. Martin, Chris Nixon

Physics & Astronomy Faculty Research

Recent observations of several protoplanetary discs have found evidence of departures from flat, circular motion in the inner regions of the disc. One possible explanation for these observations is a disc warp, which could be induced by a planet on a misaligned orbit. We present three-dimensional numerical simulations of the tidal interaction between a protoplanetary disc and a misaligned planet. For low planet masses, we show that our simulations accurately model the evolution of inclined planet orbit (up to moderate inclinations). For a planet massive enough to carve a gap, the disc is separated into two components and the gas …


A Study Of Hα Line Profile Variations In Β Lyr, Richard Ignace, Sharon K. Gray, Macno A. Magno, Gary D. Henson, Derek Massa Aug 2018

A Study Of Hα Line Profile Variations In Β Lyr, Richard Ignace, Sharon K. Gray, Macno A. Magno, Gary D. Henson, Derek Massa

ETSU Faculty Works

We examine over 160 archival Hα spectra from the Ritter Observatory for the interacting binary β Lyr obtained between 1996 and 2000. The emission is characteristically double-peaked, but asymmetric, and with an absorption feature that is persistently blueshifted. Using a set of simplifying assumptions, phase varying emission line profiles are calculated for Hα formed entirely in a Keplerian disk, and separately for the line formed entirely from an off-center bipolar flow. However, a dynamic spectrum of the data indicates that the blueshifted feature is not always present, and the data are even suggestive of a drift of the …