Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 91 - 94 of 94

Full-Text Articles in Physical Sciences and Mathematics

Lisa Time-Delay Interferometry Zero-Signal Solution: Geometrical Properties, Massimo Tinto, Shane L. Larson Jan 2004

Lisa Time-Delay Interferometry Zero-Signal Solution: Geometrical Properties, Massimo Tinto, Shane L. Larson

All Physics Faculty Publications

Time-delay interferometry (TDI) is the data processing technique needed for generating interferometric combinations of data measured by the multiple Doppler readouts available onboard the three Laser Interferometer Space Antenna (LISA) spacecraft. Within the space of all possible interferometric combinations TDI can generate, we have derived a specific combination that has zero response to the gravitational wave signal, and called it the zero-signal solution (ZSS). This is a two-parameter family of linear combinations of the generators of the TDI space, and its response to a gravitational wave becomes null when these two parameters coincide with the values of the angles of …


Lisa, Binary Stars, And The Mass Of The Graviton, Curt Cutler, William A. Hiscock, Shane L. Larson Jan 2003

Lisa, Binary Stars, And The Mass Of The Graviton, Curt Cutler, William A. Hiscock, Shane L. Larson

All Physics Faculty Publications

We extend and improve earlier estimates of the ability of the proposed LISA (Laser Interferometer Space Antenna) gravitational wave detector to place upper bounds on the graviton mass mg by comparing the arrival times of gravitational and electromagnetic signals from binary star systems. We show that the best possible limit on mg obtainable this way is ∼50 times better than the current limit set by solar system measurements. Among currently known, well-understood binaries, 4U1820-30 is the best for this purpose; LISA observations of 4U1820-30 should yield a limit ≈3-4 times better than the present solar system bound. AM …


Using Binary Star Observations To Bound The Mass Of The Graviton, Shane L. Larson, William A. Hiscock Jan 2000

Using Binary Star Observations To Bound The Mass Of The Graviton, Shane L. Larson, William A. Hiscock

All Physics Faculty Publications

Interacting white dwarf binary star systems, including helium cataclysmic variable (HeCV) systems, are expected to be strong sources of gravitational radiation, and should be detectable by proposed space-based laser interferometer gravitational wave observatories such as LISA. Several HeCV star systems are presently known and can be studied optically, which will allow electromagnetic and gravitational wave observations to be correlated. Comparisons of the phases of a gravitational wave signal and the orbital light curve from an interacting binary white dwarf star system can be used to bound the mass of the graviton. Observations of typical HeCV systems by LISA could potentially …


Sensitivity Curves For Spaceborne Gravitational Wave Interferometers, Shane L. Larson, William A. Hiscock, Ronald W. Hellings Jan 2000

Sensitivity Curves For Spaceborne Gravitational Wave Interferometers, Shane L. Larson, William A. Hiscock, Ronald W. Hellings

All Physics Faculty Publications

To determine whether particular sources of gravitational radiation will be detectable by a specific gravitational wave detector, it is necessary to know the sensitivity limits of the instrument. These instrumental sensitivities are often depicted (after averaging over source position and polarization) by graphing the minimal values of the gravitational wave amplitude detectable by the instrument versus the frequency of the gravitational wave. This paper describes in detail how to compute such a sensitivity curve given a set of specifications for a spaceborne laser interferometer gravitational wave observatory. Minor errors in the prior literature are corrected, and the first (mostly) analytic …