Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Artificial Intelligence and Robotics

Old Dominion University

Series

Simulation

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

A Structured Narrative Prompt For Prompting Narratives From Large Language Models: Sentiment Assessment Of Chatgpt-Generated Narratives And Real Tweets, Christopher J. Lynch, Erik J. Jensen, Virginia Zamponi, Kevin O'Brien, Erika Frydenlund, Ross Gore Jan 2023

A Structured Narrative Prompt For Prompting Narratives From Large Language Models: Sentiment Assessment Of Chatgpt-Generated Narratives And Real Tweets, Christopher J. Lynch, Erik J. Jensen, Virginia Zamponi, Kevin O'Brien, Erika Frydenlund, Ross Gore

VMASC Publications

Large language models (LLMs) excel in providing natural language responses that sound authoritative, reflect knowledge of the context area, and can present from a range of varied perspectives. Agent-based models and simulations consist of simulated agents that interact within a simulated environment to explore societal, social, and ethical, among other, problems. Simulated agents generate large volumes of data and discerning useful and relevant content is an onerous task. LLMs can help in communicating agents' perspectives on key life events by providing natural language narratives. However, these narratives should be factual, transparent, and reproducible. Therefore, we present a structured narrative prompt …


Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu Jan 2022

Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu

Mathematics & Statistics Faculty Publications

We study the use of deep learning techniques to reconstruct the kinematics of the neutral current deep inelastic scattering (DIS) process in electron–proton collisions. In particular, we use simulated data from the ZEUS experiment at the HERA accelerator facility, and train deep neural networks to reconstruct the kinematic variables Q2 and x. Our approach is based on the information used in the classical construction methods, the measurements of the scattered lepton, and the hadronic final state in the detector, but is enhanced through correlations and patterns revealed with the simulated data sets. We show that, with the appropriate selection …