Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Statistical Approach To Quantifying Interceptability Of Interaction Scenarios For Testing Autonomous Surface Vessels, Benjamin E. Hargis, Yiannis E. Papelis Apr 2023

Statistical Approach To Quantifying Interceptability Of Interaction Scenarios For Testing Autonomous Surface Vessels, Benjamin E. Hargis, Yiannis E. Papelis

Modeling, Simulation and Visualization Student Capstone Conference

This paper presents a probabilistic approach to quantifying interceptability of an interaction scenario designed to test collision avoidance of autonomous navigation algorithms. Interceptability is one of many measures to determine the complexity or difficulty of an interaction scenario. This approach uses a combined probability model of capability and intent to create a predicted position probability map for the system under test. Then, intercept-ability is quantified by determining the overlap between the system under test probability map and the intruder’s capability model. The approach is general; however, a demonstration is provided using kinematic capability models and an odometry-based intent model.


Enhancing Pedestrian-Autonomous Vehicle Safety In Low Visibility Scenarios: A Comprehensive Simulation Method, Zizheng Yan, Yang Liu, Hong Yang Apr 2023

Enhancing Pedestrian-Autonomous Vehicle Safety In Low Visibility Scenarios: A Comprehensive Simulation Method, Zizheng Yan, Yang Liu, Hong Yang

Modeling, Simulation and Visualization Student Capstone Conference

Self-driving cars raise safety concerns, particularly regarding pedestrian interactions. Current research lacks a systematic understanding of these interactions in diverse scenarios. Autonomous Vehicle (AV) performance can vary due to perception accuracy, algorithm reliability, and environmental dynamics. This study examines AV-pedestrian safety issues, focusing on low visibility conditions, using a co-simulation framework combining virtual reality and an autonomous driving simulator. 40 experiments were conducted, extracting surrogate safety measures (SSMs) from AV and pedestrian trajectories. The results indicate that low visibility can impair AV performance, increasing conflict risks for pedestrians. AV algorithms may require further enhancements and validations for consistent safety performance …


A Structured Narrative Prompt For Prompting Narratives From Large Language Models: Sentiment Assessment Of Chatgpt-Generated Narratives And Real Tweets, Christopher J. Lynch, Erik J. Jensen, Virginia Zamponi, Kevin O'Brien, Erika Frydenlund, Ross Gore Jan 2023

A Structured Narrative Prompt For Prompting Narratives From Large Language Models: Sentiment Assessment Of Chatgpt-Generated Narratives And Real Tweets, Christopher J. Lynch, Erik J. Jensen, Virginia Zamponi, Kevin O'Brien, Erika Frydenlund, Ross Gore

VMASC Publications

Large language models (LLMs) excel in providing natural language responses that sound authoritative, reflect knowledge of the context area, and can present from a range of varied perspectives. Agent-based models and simulations consist of simulated agents that interact within a simulated environment to explore societal, social, and ethical, among other, problems. Simulated agents generate large volumes of data and discerning useful and relevant content is an onerous task. LLMs can help in communicating agents' perspectives on key life events by providing natural language narratives. However, these narratives should be factual, transparent, and reproducible. Therefore, we present a structured narrative prompt …


Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu Jan 2022

Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu

Mathematics & Statistics Faculty Publications

We study the use of deep learning techniques to reconstruct the kinematics of the neutral current deep inelastic scattering (DIS) process in electron–proton collisions. In particular, we use simulated data from the ZEUS experiment at the HERA accelerator facility, and train deep neural networks to reconstruct the kinematic variables Q2 and x. Our approach is based on the information used in the classical construction methods, the measurements of the scattered lepton, and the hadronic final state in the detector, but is enhanced through correlations and patterns revealed with the simulated data sets. We show that, with the appropriate selection …


A Method For Introducing Artificial Perception (Ap) To Improve Human Behavior Representation (Hbr) Using Agents In Synthetic Environments, Randall Bartholomew Garrett Apr 2009

A Method For Introducing Artificial Perception (Ap) To Improve Human Behavior Representation (Hbr) Using Agents In Synthetic Environments, Randall Bartholomew Garrett

Computational Modeling & Simulation Engineering Theses & Dissertations

While psychology has shown that perception is very important for the human decision process, agent perception has not been covered in sufficient detail within the agent directed simulation field. To contribute to such a solution, an open challenge lies in capturing the knowledge of human sciences, such as psychology, and making this knowledge usable for engineers. This dissertation addresses perception by describing an experimental method where agent perception simulates human perception. In particular, it presents engineering methods based on accepted psychological approaches resulting in a proof of concept. To prove the feasibility, an Artificial Perception (AP) meta-model is presented using …